
An extension of the DS/AHP method by several levels of
criteria

Abstract

An extension of the DS/AHP method is proposed in the paper. The extension takes into
account the fact that the multi-criteria decision problem might have a number of levels of
criteria. Moreover, expert judgments concerning the criteria are imprecise and incomplete.
The proposed extension also uses groups of experts or decision makers for comparing de-
cision alternatives and criteria. It does not require assigning favorability values for groups
of decision alternatives and criteria. The computation procedure is reduced to solving a
�nite set of linear programming problems. Numerical examples explain and illustrate the
proposed modi�cations.
Keywords: multi-criteria decision problem, analytic hierarchy process, Dempster-Shafer

theory, pairwise comparison, linear programming.

1 Introduction

One of the most well-established and frequently used method for solving a multi-criteria de-
cision problem is the analytic hierarchy process (AHP) proposed by Saaty [1]. In the AHP,
the decision maker (DM) models a problem as a hierarchy of criteria and decision alternatives
(DA�s). After the hierarchy is constructed, the DM assesses the importance of each element at
each level of the hierarchy. This is accomplished by generating entries in a pairwise comparison
matrix where elements are compared to each other. For each pairwise comparison matrix, the
DM uses a method to compute a priority vector that gives the relative weights of the elements
at each level of the hierarchy. Weights across various levels of the hierarchy are then aggregated
using the principle of hierarchic composition to produce a �nal weight for each alternative.

The strength of AHP is that it organizes various factors in a systematic way and provides
a structured simple solution to decision making problems. However, additional to the fact
that the AHP method must perform very complicated and numerous pairwise comparisons
amongst alternatives, and it is also di¢ cult to obtain a convincing consistency index with an
increasing number of attributes or alternatives. Moreover, the method uses precise estimates of
experts or the DM. This condition can not be satis�ed in many applications because judgments
elicited from experts are usually imprecise and unreliable due to the limited precision of human
assessments.

In order to overcome these di¢ culties and to extend the AHP on a more real elicitation
procedures, Beynon et al [2, 3] proposed a method using Dempster-Shafer theory (DST) and
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called the DS/AHP method. The method was developed for decision making problems with a
single DM, and it applies the AHP for collecting the preferences from a DM and for modelling
the problem as a hierarchical decision tree. A nice analysis of the DS/AHP method is given
by Tervonen et al [4]. It should be noted that the main excellent idea underlying the DS/AHP
method is not applying DST to the AHP. It is the comparison of groups of alternatives with a
whole set of alternatives. The such type comparison is equivalent to the preference stated by
the DM.

The DS/AHP method has many advantages. However, it does not allow us to apply the
procedure of incomplete elicitation used for assessment of DA�s on levels of criteria. At the
same time, it is also di¢ cult to obtain precise weights of criteria in many applications. The
problem becomes more complicated when the number of levels of criteria is two or larger.

Therefore, we propose an extension of the DS/AHP method which generalize the method
and partially overcome the above di¢ culties. The extension takes into account the fact that
the multi-criteria decision problem might have a number of levels of criteria. Moreover, it
is assumed that expert judgments concerning the criteria are imprecise and incomplete. The
proposed extension also uses groups of experts or decision makers for comparing decision
alternatives and criteria. It employs the fact that the belief and plausibility measures in the
framework of DST can be regarded as lower and upper bounds for the probability of an event.
A computation procedure realizing the extension is reduced to a number of rather simple linear
programming problems.

2 Dempster-Shafer theory

Let U be a universal set under interest, usually referred to in evidence theory as the frame of
discernment. Suppose N observations were made of an element u 2 U , each of which resulted
in an imprecise (non-speci�c) measurement given by a set A of values. Let ci denote the
number of occurrences of the set Ai � U , and Po(U) the set of all subsets of U (power set of
U). A frequency function m, called basic probability assignment (BPA), can be de�ned such
that [5, 6]:

m : Po(U)! [0; 1]; m(?) = 1;
X

A2Po(U)
m(A) = 1:

Note that the domain of BPA, Po(U), is di¤erent from the domain of a probability density
function, which is U . According to [5], this function can be obtained as follows:

m(Ai) = ci=N: (1)

If m(Ai) > 0, i.e. Ai has occurred at least once, then Ai is called a focal element.
According to [6], the belief Bel(A) and plausibility Pl(A) measures of an event A � 
 can

be de�ned as
Bel(A) =

X
Ai:Ai�A

m(Ai); Pl(A) =
X

Ai:Ai\A6=?
m(Ai): (2)
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As pointed out in [7], a belief function can formally be de�ned as a function satisfying axioms
which can be viewed as a weakening of the Kolmogorov axioms that characterize probability
functions. Therefore, it seems reasonable to understand a belief function as a generalized
probability function [5] and the belief Bel(A) and plausibility Pl(A) measures can be regarded
as lower and upper bounds for the probability of A, i.e., Bel(A) � Pr(A) � Pl(A).

3 The DS/AHP method

Suppose that there is a set of DA�s A = fA1; :::; Ang consisting of n elements. Moreover, there
is a set of criteria C = fC1; :::; Crg consisting of r elements. In the DS/AHP method, the DM
chooses some subsets Bk 2 Po(A) of DA�s from the power set Po(A) in accordance with the
certain criterion Cj from C. The nice idea in [2, 3] is that instead of comparing DA�s between
each other, the DM has to identify favorable DA�s from the set A. This choice can be regarded
as the comparison between the group or subset Bk of DA�s and the whole set of DA�s A. In
other words, in DS/AHP, all pairwise comparisons are made against the set A. This is a very
interesting and subtle approach. We should mention that only single DA�s are compared in
the AHP.

After the decision tree is set up, the weights of criteria have to be de�ned. They are obtained
using the standard pairwise comparison method as in AHP. The DM also has to make pairwise
comparisons between groups of DA�s and the set A, from which the so-called knowledge matrix
[3] (a reduced matrix of pairwise comparisons with respect to each criterion) is formed for each
criterion. After the comparisons are made, the knowledge matrices are multiplied in a speci�c
way by the weights for criteria. Then priority values are obtained for groups of DA�s and A
using the eigenvector method. After the priority values have been obtained, they are combined
using Dempster�s rule of combination.

We illustrate the DS/AHP method by the following numerical example.

Example 1 Let us study a decision problem where the DM has to choose which one of three
types of transport to use. Three DA�s (rail transport (A1), motor transport (A2), water trans-
port (A3)) are evaluated based on two criteria: reliability of delivery (C1) and freight charge
(C2). The knowledge matrix for criterion C1 is shown in Table 1. According to [3], a 6-point
scale (1-6) is used for the pairwise comparisons instead of a 9-point scale (1-9) as in AHP. It
can be seen from Table 1 that DA�s A2, A3 are viewed as extremely favorable compared to the
set A = fA1; A2; A3g. The zero�s which appear in the knowledge matrix indicate no attempt
to assert knowledge between groups of DA�s, for instance, fA1g to fA2; A3g. This assertion
can be made indirectly through knowledge of the favorability of A1 to A and fA2; A3g to A
relatively. In Table 1, the indirect knowledge is that A1 is not considered more favorable to
fA2; A3g in relation to A. The knowledge matrix for criterion C2 is shown in Table 2.

The following rule for processing the knowledge matrices is proposed in [3]. If p is the
weight for a criterion and xij is the favorability opinion for a particular group of DA�s with
respect to this criterion, then the resultant value is p � xij (the resultant change in the bottom
row of the matrix is similarly 1=(p �xij)). For instance, the knowledge matrix for freight charge
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Table 1: The knowledge matrix for reliability of delivery
fA1g fA2; A3g fA1; A2; A3g

fA1g 1 0 4

fA2; A3g 0 1 6

fA1; A2; A3g 1=4 1=6 1

Table 2: The knowledge matrix for freight charge
fA2g fA1; A2; A3g

fA2g 1 1=2

fA1; A2; A3g 2 1

can be rewritten by taking into account that the weight for C2 is 0:4 as shown in Table 3.
Using the knowledge matrices for each of the criteria normalized knowledge vectors can be

produced, following the traditional AHP method. The elements of the vectors can be regarded
as the BPA�s of groups of DA�s. As a result, we get

m1(fA1g j fC1g) = 0:398; m1(fA2; A3g j fC1g) = 0:457; m1(A j fC2g) = 0:145;

m2(fA2g j fC2g) = 0:56; m2(A j fC2g) = 0:44:

By considering the criteria as independent pieces of evidence, these pieces of evidence can
be combined by using Dempster�s rule of combination. For brevity, we will not present the �nal
results here. The interested reader should refer to [3].

4 Incomplete information about criteria

The DS/AHP method is a powerful tool for solving multi-criteria decision problems. However,
it has some disadvantages mentioned in the introductory section. First of all, it is di¢ cult to
assign a numerical value of the favorability opinion for a particular group of DA�s. The second
is that the standard procedure of the pairwise comparisons remains for criteria. Therefore, we
propose to extend the DS/AHP method and to identify favorable criteria or groups of criteria
from the set C. Moreover, we propose to use only estimates like �preferable� or �not� by
choosing the corresponding groups of DA�s or criteria. We also suppose that there are many
experts or DM�s for evaluating DA�s and criteria, and every expert judgment adds �1�to the
corresponding preference.

Table 3: Updated knowledge matrix for freight charge
fA2g fA1; A2; A3g

fA2g 1 1:25

fA1; A2; A3g 0:8 1
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Table 4: Expert preferences related to criteria
fC1g fC2g fC1C2g
D1 D2 D3

ck 6 4 5

m (Dk) 6=15 4=15 5=15

We again suppose that there is a set of DA�s A = fA1; :::; Ang consisting of n elements
and a set of criteria C = fC1; :::; Crg consisting of r elements. Experts choose some subsets
Bk 2 Po(A) of DA�s from the power set Po(A) in accordance with the certain criterion Cj from
C. Moreover, they choose some subsets Di 2 Po(C) from the power set Po(C) as favorable
groups of criteria.

In accordance with the introduced notation, expert�s judgments can be represented in the
form of preferences Bk � A, i.e., an expert chooses the subset Bk from the set of all DA�s as the
most preferable group of DA�s. The preference A � A means that an expert meets di¢ culties
in choosing some preferable subset of Po(A).

The expert elicitation and an assessment processing procedure can be represented by means
of the two-step scheme.

At the �rst step, every expert picks out the most important or preferable group of criteria.
If the number of experts, participating at this step, is NC , then we can compute the BPA�s
m(Di) = ci=NC of all focal elements Di � C (see Table 4), where NC =

P2r�1
i=1 c

(k)
i .

At the second step, every expert chooses a subset Bi � A of DA�s as the most preferable
DA�s from the set A with respect to the prede�ned criterion Cj . After all experts choose the
subsets of DA�s with respect to the j-th criterion, we have the set of integers a(j)1 ; a

(j)
2 ; :::; a

(j)
l

corresponding to the numbers of experts chosen subsets B1; :::; Bl, respectively. This procedure
is repeating r times for all j = 1; :::; r, i.e., for all criteria from the set C. If we denote the
total number of assessments related to DA�s with respect to the j-th criterion N (j)

A , then the

conditional BPA of every subset Bi is computed as m(Bi j Cj) = a(j)i =N
(j)
A , N (j)

A =
P2n�1
i=1 a

(j)
i

(see Table 5).

Example 2 Let us return to Example 1. 15 experts provide preferences concerning criteria
(see Table 4) and preferences concerning the DA�s with respect to criteria C1 and C2 (see Table
5). The correspondences between subsets of criteria (DA�s) and short notations Dk (Bk) are
also represented in Tables 4 and 5.

The next problem is to combine the above information for obtaining the weights of DA�s.
The main di¢ culty here is that in addition to judgments concerning single criteria, we have
possible judgments concerning the groups of criteria. These judgments also have to be taken
into account. The following approach can be proposed here for solving this problem.

On one hand, by having BPA�s m (Dk) of subsets Dk � C, the belief and plausibility
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Table 5: Expert preferences related to DA�s
fA1g fA2g fA3g fA1A2g fA1A3g fA2A3g fA1A2A3g
B1 B2 B3 B4 B5 B6 B7

a
(1)
i 5 2 3 4 0 0 1

a
(2)
i 3 1 2 3 3 1 2

m (BijC1) 5=15 2=15 3=15 4=15 0 0 1=15

m (BijC2) 3=15 1=15 2=15 3=15 3=15 1=15 2=15

functions of Dk can be computed as

Bel(Dk) =
X

i:Di�Dk

m (Di) ;

Pl(Dk) =
X

i:Di\Dk 6=?
m (Di) ; k = 1; :::; 2

r � 1:

On the other hand, suppose that the j-th criteria is chosen by experts with some unknown
probability pj such that the condition

Pr
j=1 pj = 1 is valid. Then the probabilities of criteria

satisfy the following system of inequalities

Bel(Dk) �
X

j:Cj2Dk

pj � Pl(Dk); k = 1; :::; 2r � 1: (3)

By viewing the belief and plausibility functions as lower and upper probabilities, respec-
tively, we can say that the set of inequalities (3) produces a set P of possible distributions
p = (p1; :::; pr) satisfying all these inequalities. Let us �x a distribution p from P. Then, by
applying the total probability theorem, we can write the combined BPA of the subset Bk as
follows:

mp(Bk) =
rX
j=1

m(Bk j Cj) � pj ; p 2 P:

It should be noted that the obtained BPA depends on the probability distribution p 2 P.
Therefore, the belief and plausibility functions of Bk also depend on the �xed probability
distribution p 2 P and are

Belp(Bk) =
X

i:Bi�Bk

mp(Bi) =
rX
j=1

pj �

0@ X
i:Bi�Bk

m(Bi j Cj)

1A ;

Plp(Bk) =
X

i:Bi\Bk 6=?
mp(Bi) =

rX
j=1

pj �

0@ X
i:Bi\Bk 6=?

m(Bi j Cj)

1A :
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The obtained belief and plausibility functions linearly depend on p. Consequently, we can
�nd the lower belief and upper plausibility functions by solving the following linear program-
ming problems:

Bel(Bk) = inf
p2P

Belp(Bk) = inf
p2P

rX
j=1

pj �

0@ X
i:Bi�Bk

m(Bi j Cj)

1A ;

Pl(Bk) = sup
p2P

Plp(Bk) = sup
p2P

rX
j=1

pj �

0@ X
i:Bi\Bk 6=?

m(Bi j Cj)

1A
subject to

Pr
j=1 pj = 1 and (3).

When we do not have information about criteria at all, then the set of constraints to the
above linear programming problems are reduced to one constraint

Pr
j=1 pj = 1. Note that the

optimal solutions to the linear programming problem can be found at one of the extreme points
of the convex sets P of distributions produced by the linear constraints. Since we remain only
one constraint

Pr
j=1 pj = 1 which forms the unit simplex, then its extreme points have the

form
(1; 0; :::; 0); (0; 1; :::; 0); :::; (0; 0; :::; 1):

Hence, it is obvious that the optimal belief and plausibility functions of the DA Bk can be
computed as follows:

Bel(Bk) = min
j=1;:::;r

X
i:Bi�Bk

m(Bi j Cj); (4)

Pl(Bk) = max
j=1;:::;r

X
i:Bi\Bk 6=?

m(Bi j Cj): (5)

It is interesting to note that the belief function of the optimal DA in the case of prior
ignorance about criteria is computed by using the �maximin�technique, i.e., we �rst compute
the minimal �combined�belief function of every DA over all criteria in accordance with (4).
Then we compute the maximal belief function among the obtained �combined�belief functions.
The plausibility function of the optimal DA is computed by using the �maximax� technique
in accordance with (5).

By having the belief and plausibility functions of all subsets Bk, k = 1; :::; 2n � 1, we can
determine the �best�DA. The choice of the �best�DA is based on comparison of intervals
produced by the belief and plausibility functions. There exist a lot of methods for comparison.
We propose to use the most justi�ed method based on the so-called caution parameter [8, 9] or
the parameter of pessimism � 2 [0; 1] which has the same meaning as the optimism parameter
in Hurwicz criterion [10]. According to this method, the �best� DA from all possible ones
should be chosen in such a way that makes the convex combination ��Bel(B) + (1� �)Pl(B)
achieve its maximum. If � = 1, then we analyze only belief functions and make pessimistic
decision. This type of decision is very often used [11, 12]. If � = 0, then we analyze only
plausibility functions and make optimistic decision.
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Example 3 Let us return to Example 2 and �nd the belief and plausibility functions of subsets
D1, D2, D3:

Bel(D1) = m (D1) = 6=15; Pl(D1) = m (D1) +m (D3) = 11=15;

Bel(D2) = m (D2) = 4=15; Pl(D2) = m (D2) +m (D3) = 9=15;

Bel(D3) = Pl(D3) = 1:

Let us compute the belief and plausibility functions of DA�s A1, A2, A3. The linear program-
ming problem for computing the belief function of the �rst DA A1 is of the form:

Bel(A1) = inf
p2P

(p1 �m (A1jC1) + p2 �m (A1jC2))

= inf
p2P

(p1 � 5=15 + p2 � 3=15)

subject to p1 + p2 = 1 and

6=15 � p1 � 11=15; 4=15 � p2 � 9=15:

The optimal solution is p1 = 2=5, p2 = 3=5. Hence Bel(A1) = 0:253. The linear program-
ming problem for computing the plausibility function of A1 has the same constraints and the
objective function

Pl(A1) = sup
p2P

 
2X
i=1

pi � (m (B1jCi) +m (B4jCi) +m (B5jCi) +m (B7jCi))
!

= sup
p2P

(p1 � 10=15 + p2 � 11=15) :

The optimal solution is p1 = 2=5, p2 = 3=5. Hence Pl(A1) = 0:707. The belief and plausibility
function of other DA�s can be computed in the same way: Bel(A2) = 0:093, Pl(A2) = 0:467,
Bel(A3) = 0:16, Pl(A3) = 0:427. It can be seen from the results that the �rst DA is optimal
by arbitrary values of � due to the inequalities Bel(A1) � Bel(A3) � Bel(A2) and Pl(A1) �
Pl(A2) � Pl(A3).

If we would not have information about importance of criteria, then

Bel(A1) = 3=15; Pl(A1) = 11=15;

Bel(A2) = 1=15; Pl(A2) = 7=15;

Bel(A3) = 2=15; Pl(A3) = 8=15:
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5 Two levels of criteria

Let us consider a case when there are two levels of criteria. The �rst (highest) level contains
t criteria from the set C = fC1; :::; Ctg. Every criterion of the �rst level has the number k1,
where k1 = 1; :::; t. For the criterion of the �rst level with the number k1, there are r criteria
from the set C2(k1) = fC1(k1); :::; Cr(k1)g on the second level1. Every criterion of the second
level has the number (k1; k2). For example, the third criterion of the second level with respect
to the second criterion of the �rst level has the number (2; 3). Experts choose some subsets
Di � C from the power set Po(C) as favorable groups of criteria on the �rst level. Experts
also choose some subsets Dk(k1) � C2(k1) from the power set Po(C2(k1)) as favorable groups
of criteria on the second level with respect to the criterion of the �rst level with the number
k1.

Suppose that the k-th criterion on the �rst level is chosen by experts with some unknown
probability qk such that the condition

Pt
k=1 qk = 1 is valid. Then the probabilities of the

criteria satisfy the following system of inequalities

Bel(Dk) �
X

j:Cj2Dk

qj � Pl(Dk); k = 1; :::; 2t � 1: (6)

Let Q be the set of probability distributions produced by all constraints (6).
Suppose that the j-th criterion on the second level with respect to the k-th criterion of the

�rst level is chosen by experts with some unknown probability qj(k) such that the conditionPr
j=1 qj(k) = 1 for every k = 1; :::; t is valid. Then the probabilities of the criteria satisfy the

following system of inequalities

Bel(Dl(k)) �
X

j:Cj(k)2Dl(k)
qj(k) � Pl(Dl(k)); l = 1; :::; 2r � 1; k = 1; :::; t: (7)

Let Q(k) be the set of probability distributions produced by all constraints (7) by a �xed
value of k.

Denote

ajl(k) =
X

i:Bi�Bl

m(Bi j Cj(k)); bjl(k) =
X

i:Bi\Bl 6=?
m(Bi j Cj(k)):

Here the index j corresponds to the j-th criterion of the second level chosen with respect to
the k-th criterion of the �rst level. The index l means the number of subset Bl chosen for
computing its belief and plausibility functions.

Let us �x the probability distributions q = (q1; :::; qt) and q(k) = (q1(k); :::; qr(k)),
k = 1; :::; t. Now we can write the conditional belief Belq;q(k)(Bl) and plausibility Plq;q(k)(Bl)
functions of Bl under conditions of �xed distributions q and q(k), k = 1; :::; t,

Belq;q(k)(Bl) =
X

i:Bi�Bl

mq;q(k)(Bi) =
tX

k=1

qk

rX
j=1

qj(k) � ajl(k); (8)

1We assume that the sets of criteria on the second level corresponding to every criterion of the �rst level are
identical, i.e., C2(i) = C2(k) = C2 for i 6= k.
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Plq;q(k)(Bl) =
X

i:Bi\Bl 6=?
mq;q(k)(Bi) =

tX
k=1

qk

rX
j=1

qj(k) � bjl(k): (9)

By minimizing the belief function and by maximizing the plausibility function over all
distributions q 2 Q and q(k) 2 Q(k), k = 1; :::; t, we can get the unconditional lower belief
and upper plausibility functions of Bl. This can be carried out by solving the optimization
problems

Bel(Bl) = min
q;q(k)

Belq;q(k)(Bl); (10)

Pl(Bl) = max
q;q(k)

Plq;q(k)(Bl) (11)

subject to (6) and (7).
At �rst sight, this is typical quadratic programming problems having linear constraints and

nonlinear objective functions. However, we can show that every optimization problem from
the above can be solved by considering a set of t+ 1 linear programming problems.

Denote

Eq(k)al(k) =
rX
j=1

qj(k) � ajl(k)

Note that the multiplier Eq(k)al(k) in (8) depends only on the probability distributions from
the set Q(k) and does not depend on the distributions from Q and Q(i), i 6= k. The same can
be said about all the multipliers of the above form. This implies that under condition qk � 0,
k = 1; :::; t, there hold

min
q;q(k)

Belq;q(k)(Bl) = min
q2Q

tX
k=1

qk

�
min

q(k)2Q(k)
Eq(k)al(k)

�
;

max
q;q(k)

Plq;q(k)(Bl) = max
q2Q

tX
k=1

qk

�
max

q(k)2Q(k)
Eq(k)al(k)

�
:

Hence, for computing the belief function, we get the set of t simple linear programming prob-
lems

Eal(k) = min
q(k)

Eq(k)al(k)

under constraints (7) or q(k) 2 Q(k) and the linear programming problem

Bel(Bl) = min
q

tX
k=1

qk � Eal(k) (12)

under constraints (6) or q 2 Q.
The same can be said about computing the plausibility function, i.e.,

Pl(Bl) = max
q

tX
k=1

qk � Eal(k) (13)
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under constraints (6) or q 2 Q, where Eal(k), k = 1; :::; t, is obtained by solving t simple linear
programming problems

Eal(k) = max
q(k)

Eq(k)al(k)

under constraints (7) or q(k) 2 Q(k).

Example 4 Let us return to Example 1 and suppose that there are two transport �rms. Every
�rm o¤ers the freight services, but have di¤erent levels of the delivery reliability and freight
charge. Two experts prefer the �rst �rm and three experts prefer both the �rms. Hence the
BPA�s of the subsets D1, D2, D3 are 0:4, 0, 0:6, respectively. The preferences of experts on
the second level of criteria with respect to the �rst and second �rms are shown in Table 6 and
in Table 7, respectively. These tables also contain the BPA�s m (Dl(k)) of all subsets of C2(k).
The expert judgments about DA�s with respect to the �rst and second criteria of the second level
are given in Table 5. Here we assume that the weights of DA�s of identical criteria of the second
level are identical, i.e., experts do not recognize or do not �see� the �rst level of criteria and
estimate DA�s with respect to the set C2(k). This implies that m(Bi j Cl(k)) = m(Bi j Cl(j))
for all possible i; l; k; j.

First of all, we �nd the values of Eal(k) and Ebl(k) for k = 1; 2. For instance, there holds
for l = 1 (B1 = fA1g), k = 1,

Ea1(1) = q1(1) � a11(1) + q2(1) � a21(1)
= q1(1) �m(B1 j C1(1)) + q2(1) �m(B1 j C2(1))
= q1(1) � 5=15 + q2(1) � 3=15:

Eb1(1) = q1(1) � b11(1) + q2(1) � b21(1)
= q1(1) � (m(B1 j C1(1)) +m(B4 j C1(1)) +m(B5 j C1(1)) +m(B7 j C1(1)))
+ q2(1) � (m(B1 j C2(1)) +m(B4 j C2(1)) +m(B5 j C2(1)) +m(B7 j C2(1)))
= q1(1) � 10=15 + q2(1) � 11=15:

Constraints are of the form (see (7)):

0:2 � q1(1) � 0:6;
0:4 � q2(1) � 0:6;
1 = q1(1) + q2(1):

By solving the linear programming problems with the above constraints, we get

Ea1(1) = 0:4 � 5=15 + 0:6 � 3=15 = 0:253;

Eb1(1) = 0:6 � 10=15 + 0:4 � 11=15 = 0:693:

In the same way, we can �nd all values of Eal(k) and Ebl(k), which are represented in
Table 8.
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Table 6: Expert preferences related to criteria on the second level
D1(1) D2(1) D3(1)

cl 2 4 4

m (Dl(k)) 0:2 0:4 0:4

Table 7: Expert preferences related to criteria on the second level
D1(2) D2(2) D3(2)

cl 3 2 5

m (Dl(k)) 0:3 0:2 0:5

Now we can compute the lower unconditional belief function Bel(Bl) from (12) by solving
the linear programming problem with objective function q1 �Eal(1)+ q2 �Eal(2) and constraints
(6):

0:4 � q1 � 1;
0 � q2 � 0:6;
1 = q1 + q2:

In the same way, we can �nd the upper unconditional plausibility function Pl(Bl) from (13) by
solving the linear programming problem with objective function q1 � Ebl(1) + q2 � Ebl(2) and the
same constraints.

The corresponding computation results are shown in Table 9. It can be seen from the results
that the �rst DA is �optimal�.
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