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Abstract

Cautious reliability estimates of multi-state and continuum-state systems are studied in the paper
under condition that initial data about reliability of components are given in the form of interval-valued
observations, measurements or expert judgments. The interval-valued information is processed by means
of a set of the imprecise Dirichlet model which can be regarded as a set of Dirichlet distributions. The
developed model of reliability provides cautious reliability measures when the number of observations or
measurements is rather small. It can be viewed as an extension of models based on random set theory
and robust statistical models. A numerical example illustrates the proposed model and an algorithm for
computing the system reliability.
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1 Introduction

Much attention have been focused on multi-state (MS) and continuum-state (CS) systems due to their
wide applicability. These systems can be regarded as a generalization of binary systems. A lot of methods[1,
2, 3, 4] for reliability analysis of various MS and CS systems have been recently proposed in the literature
and a comprehensive review of many methods can be found in a book written by Levitin and Lisnianski[5].
However, most approaches to reliability analysis assume that precise probability distributions (probability
density functions) on states of MS (CS) components are known. But it is difficult to expect that such the
complete information is always available. Therefore, the approaches and models taking into account possible
incompleteness of information about reliability behavior of MS and CS systems are very important. Some
models of the MS system reliability using the imprecise probability theory (also called the theory of lower
previsions[6], the theory of interval statistical models[7], the theory of interval probabilities[8]) have been
proposed by Utkin and Gurov[9], Utkin and Kozine[10]. These models assume that the initial information
about states of components is partial and represented as a set of probabilistic constraints which produce a set
of possible probability distributions of the component states. These constraints usually restrict possible values
of expectations of some functions of the component states. It should be noted that various kinds of reliability
judgments[11, 12] can be represented by constraints for expectations (by lower and upper expectations), in
particular, probabilities (expectations of indicator functions), mean levels of system or component performance,
comparative judgments, etc. As a result, the obtained system reliability measures become interval-valued. At
the same time, these models require having probabilistic expert judgments at hand and this is a very strong
restriction due to a lack of such data in many cases. Another way for taking into account the fact that
there are no precise probabilities of states was proposed by Lindqvist and Langseth[13]. They assumed that
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the probabilities of states are random variables themselves defined on the unit simplex and governed by
the Dirichlet distribution. However, the authors assumed that parameters of the Dirichlet distributions are
precisely known that often may be not a case.

The present paper studies a model dealing with interval-valued observations or measurements of the com-
ponent states. It is no secret that the precise observations of states can not be obtained for many real systems,
especially, for CS systems, due to some imperfection of diagnostic and measuring equipment and methods.
Therefore, the corresponding approaches processing such initial data have to be developed. One of the pos-
sible frameworks for taking into account interval-valued observations or measurements is Dempster-Shafer or
random set theory [14, 15]. It is worth noting that this theory has been applied to reliability analysis of some
systems [16, 17]. However, the methods proposed and Dempster-Shafer theory itself do not take into account
the fact that the number of observations or measurements might be very small and reliability conclusions using
this theory might be too risky in this case. Therefore, the main objective of the present paper is to develop
an approach taking into account the above difficulties of the available models and providing the cautious
reliability analysis of MS and CS systems by interval-valued observations or measurements of the component
states. The main tool for achieving this objective is the so-called imprecise Dirichlet model [18] which can be
regarded as a set of Dirichlet distributions. From this point of view, the developed model can be viewed as an
extension of some results of the work[13] to unreliable interval-valued measurements.

The paper is organized as follows. A short description of a general model of MS and CS systems is given
in Section 2. Section 3 studies a method for uncertainty modelling of the component reliability on the basis
of the imprecise Dirichlet model. Several interpretations and a updating procedure of the obtained lower and
upper probabilities are also given in this section. General expressions for reliability measures of MS systems
are proposed in Section 4. These expressions are simplified for series and parallel MS systems in the same
section. Reliability analysis of CS systems is provided in Section 5. The theoretical results are illustrated by
a numerical example in Section 6. Propositions stated in the paper are proved in Appendix.

2 General model of multi-state and continuum-state systems

Let Li = {S(i)
1 , ..., S

(i)
m } be the set representing levels of the i-th component performance ranging from

perfect functioning sup Li to complete failure inf Li. A general model of the structure function of a system
consisting of n MS components has been proposed by Montero et al.[4]. It can be written as S : L1× ...×Ln →
L0. In order to give the reader the essence of the subject analyzed and make all the formulas more readable,
we will assume L0 = L1 = ... = Ln = L. If L = {0, 1}, i = 0, ..., n, we have a classical binary system; if
L = {0, 1, . . . ,m}, we have a MS system; if L = [0, T ], T ∈ R+, we have a CS system. At arbitrary time t the
i-th component may be in a state xi(t). This implies that the component is described by the random process
{xi(t), t ≥ 0}, xi(t) ∈ L. Then the probability distribution function of the i-th component states at time t is
defined as the mapping Fi : L → [0, 1] such that Fi(r) = Pr{xi(t) ≥ r} ∀r ∈ L. The probability that the i-th
component is in the r-th state for MS systems is defined as πi(r) = Pr{xi(t) = r}. For CS system, we also
define the density function of states as fi(r) = dFi(r)/dr. The state of the system is determined by states of
its n components, i.e.,

S = S(X) = S(x1, . . . , xn) ∈ L.

Then the probability distribution function of the system states at time t is defined as the mapping F : L → [0, 1]
such that F (r) = Pr{S(X) ≥ r} ∀r ∈ L. In the following, we shall omit variable t for brevity.

A system of n components with the structure function S is called a monotone MS system if S(X) is
increasing in each argument and S(r, . . . , r) = r ∀r ∈ L. The basic properties of monotone MS systems were
studied by Barlow and Wu[2].

The reliability measures of the MS system also can be represented in the form of expectations. For example,
the probability Pr{S(X) ≥ r} is written as

Pr{S(X) ≥ r} = E1[r,m](S(X)).

Here 1[a,b](x) is the indicator function taking the value 1 if x ∈ [a, b] and 0 if x /∈ [a, b]. The mean level of
system performance h is determined as h = ES(X).
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3 Uncertainty model of multi-state components

The standard approach to reliability analysis of MS systems is to find the probabilities πi(r) of states
of every component and to calculate the system reliability measures by using the system function S(X).
The usual procedure in the common case of unknown probabilities πi(r) is to use the empirical probabilities
πi(r) = ni(r)/Ni as if they were precisely known chances. Here ni(r) is the number of observations of the
r-th state in Ni trials. This is not always suitable: (i) the point estimate πi(r) might be not available; (ii) the
possible small number of statistical data makes the statistical inference too incautious. Therefore, we propose
an uncertainty model of a component under conditions of lack of sufficient statistical data and of possible lack
of point estimates.

Suppose that there is a set of Ki bounds for the i-th component states in the form of intervals (subsets
of states) A

(i)
1 , A

(i)
2 , ..., A

(i)
Ki

such that A
(i)
j ⊆ L. All intervals are provided by experts or resulted from

observations and measurements. At that, it is assumed that a “true” state might be inside the interval A
(i)
j .

3.1 Imprecise Dirichlet model

Let L = {0, ..., m} be a set of states of the i-th component regarded as the possible outcomes. Assume
the standard multinomial model : N point-valued or “crisp” observations are independently chosen from L
with an identical probability distribution πij for j = 0, ..., m, where each πij ≥ 0 and

∑m
j=0 πij = 1. Denote

π(i) = (πi0, ..., πim). Let nij denote the number of observations of state j of the i-th component in the N
trials, so that nij ≥ 0 and

∑m
j=0 nij = N . Under the above assumptions the random variables ni0, ..., nim

have a multinomial distribution and the observed multinomial likelihood function generated by the data
n(i) = (ni0, ..., nim) is

L(n(i)|π(i)) ∝
m∏

j=0

(πij)
nij .

Suppose that the probabilities π(i) of states of the i-th component are random variables governed by the
Dirichlet (s, α) distribution with parameters α = (α1, ..., αm), which has probability density function[19]

pi(π(i)) = Γ(s)




m∏

j=0

Γ(sαj)



−1

m∏

j=0

π
sαj−1
ij .

Here the parameter αj ∈ (0, 1) is the mean of πij under the Dirichlet prior; the hyperparameter s > 0
determines the influence of the prior distribution on posterior probabilities; the vector π(i) belongs to the
interior of the K-dimensional unit simplex denoted by S(1,K); Γ(·) is the Gamma-function which satisfies
Γ(x + 1) = xΓ(x) and Γ(1) = 1.

When multiplied by the multinomial likelihood function L(n(i)|π(i)), the Dirichlet (s, α) prior density
generates a posterior density function

p(π(i)|n(i)) ∝ p(π(i))L(n(i)|π(i)) =
m∏

j=0

π
nij+sαj−1
ij ,

which is seen to be the probability density function of a Dirichlet (N + s, α∗) distribution, where α∗j =
(nij + sαj)/(N + s).

A property of the Dirichlet distribution is that its marginal distributions are also Dirichlet distributions.
In particular, its univariate marginals are Beta distributions (m = 2) and the Dirichlet distribution can be
seen as a multivariate generalization of the Beta distribution.

Walley[18] pointed out several reasons for using a set of Dirichlet distributions to model prior ignorance
about probabilities π(i):

1. Dirichlet prior distributions are mathematically tractable because they generate Dirichlet posterior dis-
tributions;
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2. sets of Dirichlet distributions are very rich, because they produce the same inferences as their convex
hulls and any prior distribution can be approximated by a finite mixture of Dirichlet distributions;

3. the most common Bayesian models for prior ignorance about probabilities π(i) are Dirichlet distributions.

The imprecise Dirichlet model (IDM) is defined by Walley [18] as the set of all Dirichlet (s, α) distributions
such that α ∈ S(1,m). For the IDM , the hyperparameter s determines how quickly upper and lower prob-
abilities of events converge as statistical data accumulate. Walley[18] defined s as a number of observations
needed to reduce the imprecision (difference between upper and lower probabilities) to half its initial value.
Smaller values of s produce faster convergence and stronger conclusions, whereas large values of s produce
more cautious inferences. At the same time, the value of s must not depend on m or a number of observations.
The detailed discussion concerning the parameter s and the IDM can be found in several papers [20, 21, 18].

Let A be any non-trivial subset of a sample space L = {S1, ..., Sm}, and let n(A) denote the observed num-
ber of occurrences of A in the N trials, n(A) =

∑
Sj∈A nj . Then, according to[18], the predictive probability

P (A|s) under the Dirichlet posterior distribution is

P (A|s) =
n(A) + sα(A)

N + s
,

where α(A) =
∑

Sj∈A αj .
By maximizing and minimizing αj under restriction α ∈ S(1,m), we obtain the posterior lower and upper

probabilities of A:

P (A|s) =
n(A)
N + s

, P (A|s) =
n(A) + s

N + s
.

If A = L, then P (A|s) = P (A|s) = 1. Note that the IDM is reduced to the “precise” Dirichlet distribution by
taking s = 0.

Why and when should we use the IDM instead of the “precise” Dirichlet distribution? Suppose that
we toss a coin five times and have 3 heads and 2 tails. By using the “precise” Dirichlet distribution (the
Dirichlet distribution is none other than the beta-distribution in case of two possibilities m = 2), we get
P (heads) = 3/5 6= 1/2. At the same time, if we take the IDM with s = 1, then P (heads|1) = 3/6 and
P (heads|1) = 4/6. It can be seen from these results that

P (heads|1) ≤ 1/2 ≤ P (heads|1).

In other words, the IDM provides lower and upper bounds for probabilities of events when the number of
observations is rather small and the resulting inference might be too incautious.

3.2 Sets of models produced by unreliable observations

It is worth noticing that the imprecise Dirichlet distribution as well as the Dirichlet distribution works
with “crisp” observations when we are able to observe separate states. By observing the subset A

(i)
j of the

component states and assuming that one of the states in this interval is “true”1, we can not exactly indicate
this “true” state and every state belonging to A

(i)
j may equally be “true” except the case when A

(i)
j consists of

one element. This implies that it is impossible to construct a unique multinomial model of observations and
we should consider some set of multinomial models and the corresponding Dirichlet distributions. Moreover,
every new subset A

(i)
j produces some additional set of the Dirichlet distributions. Denote the k-th possible

vector of “crisp” states by nk = (nk0, ..., nkm) and the total number of such the vectors Q. We omit the index
i when it is not important. Here

∑m
j=0 nkj = Ki. For example, suppose that we have a 4-state component

and two observations A
(i)
1 = {1, 2}, A

(i)
2 = {0, 1} of states at time t. Then the possible observations of “crisp”

states are shown in Table 1.
1A component can not simultaneously be in two or more states. It can be only in one state. By observing a subset of the

component, we can say that it has to be in some state which is unknown, but we call this state “true”.
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Table 1: Possible “crisp” observations
states 0 1 2 3
n1 0 1 1 0
n2 1 1 0 0
n3 1 0 1 0
n4 0 2 0 0

The above can be represented by means of the well-known urn model. Suppose that there are m + 1 urns
u0, ..., um containing balls with numbers 0, ..., m, respectively. We randomly choose a subset A

(i)
j of lj urns

such that A
(i)
j = {uk : k ∈ Jij}, where Jij is a set of indices. Then we take randomly one ball from the urns

numbered by elements of Jij . The same procedure is repeated Ki times, i.e., for each of the observed subsets.
What can we say about possible numbers of balls chosen from each urn now? It is obvious that there exist
different combinations of numbers of balls except the case when lj = 1 for j = 1, ...,Ki, i.e., all sets A

(i)
j consist

of one element. Suppose that the number of the possible combinations is M . If to assume that the subsets
A

(i)
j are independently chosen from the set of all subsets of urns and the probability of selecting a ball from

the i-th urn is πi, then every combination of balls produces the standard multinomial model. Moreover, we
can not prefer one model over another.

For every model (every vector nk), the probability of an arbitrary subset A ⊆ L depends on nk, that is,
we can find P (A|nk). So far as all models are equivalent, even by precise probabilities of all states only lower
and upper probabilities of A can be computed

P (A) = min
k=1,...,Q

P (A|nk), P (A) = max
k=1,...,Q

P (A|nk).

In particular, if all subsets A
(i)
j consist of single components, then Q = 1 and

P (A) = P (A|nk), P (A) = P (A|nk).

3.3 Computing the probabilities P (A|s) and P (A|s)
By using the IDM , we can write the lower P (A|s) and upper P (A|s) probabilities that the “true” state of

the i-th component belong to subset A as follows:

P (A|s) = min
k=1,...,Q

inf
α∈S(1,m+1)

nk(A) + sα(A)
Ki + s

,

P (A|s) = max
k=1,...,Q

sup
α∈S(1,m+1)

nk(A) + sα(A)
Ki + s

,

where
α(A) =

∑

j∈A

αj , nk(A) =
∑

j∈A

nkj .

Now we have to find nk(A) and α(A). The lower and upper probabilities P (A|s) and P (A|s) can be
rewritten as follows:

P (A|s) =
min

k=1,...,Q
nk(A) + s · inf

α∈S(1,m+1)
α(A)

Ki + s
,

P (A|s) =

max
k=1,...,Q

nk(A) + s · sup
α∈S(1,m+1)

α(A)

Ki + s
.
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Proposition 1 Denote
Z1(A) = min

k=1,...,Q
nk(A) =

∑

j:A
(i)
j ⊆A

1,

Z2(A) = max
k=1,...,Q

nk(A) = Ki −
∑

j:A
(i)
j ∩A=∅

1 =
∑

j:A
(i)
j ∩A 6=∅

1.

Then the following equalities are valid for any A 6= ∅ and A 6= L:

P (A|s) =
Z1(A)
Ki + s

, P (A|s) =
Z2(A) + s

Ki + s
.

If A = ∅, then P (A|s) = P (A|s) = 0. If A = L, then P (A|s) = P (A|s) = 1.

Proposition 1 shows that the lower and upper probabilities of arbitrary events closely depend on the number
Ki of observations and the hyperparameter s.

3.4 Additional interpretations of P (A|s) and P (A|s)

3.4.1 P (A|s) and P (A|s) as the parametric extensions of belief and plausibility functions

Suppose Ki observations of an element u ∈ L were made, each of which resulted in an imprecise (non-specific)
measurement given by a set Aj of values. Let cj denote the number of occurrences of the set Aj ⊆ L, and
P(L) the set of all subsets of L (power set of L). Here

∑
j:Aj 6=∅ cj = Ki. In the framework of random set

theory [14, 15], a frequency function m, called basic probability assignment, can be defined as follows:

m : P(L) → [0, 1], m(∅) = 1,
∑

A∈P(L)

m(A) = 1.

This function can be also obtained as m(Aj) = cj/Ki. Then the belief Bel(A) and plausibility Pl(A) functions
[14, 15] of an event A ⊆ L are defined as

Bel(A) =
∑

j:Aj⊆A

m(Aj), P l(A) =
∑

j:Aj∩A 6=∅
m(Aj).

It is noteworthy that the obtained probabilities P (A|s) and P (A|s) can be regarded as some parametric
extensions of the belief Bel(A) and plausibility Pl(A) functions of A. According to [22, 23], we can write

P (A|s) =
Ki ·Bel(A)

Ki + s
, P (A|s) =

Ki · Pl(A) + s

Ki + s
.

If s = 0, then P (A, 0) = Bel(A), P (A, 0) = Pl(A). However, by using the probabilistic interpretation of the
belief and plausibility functions[24], we need to have a lot of judgments in order to compute the so-called basic
probability assignments for events and this is just unrealistic in many reliability applications. At the same
time, by increasing the hyperparameter s, we can make the results to be more cautious and the possible large
imprecision of results reflects insufficiency of available information.

Moreover, P (A|s) and P (A|s) are again belief and plausibility functions with the basic probability assign-
ment m∗(Aj) = cj/(Ki + s) for every Aj and the additional basic probability assignment m∗(L) = s/(Ki + s),
i.e., P (A|s) and P (A|s) can be obtained as standard belief and plausibility functions under condition that
there are s additional (non-informative) observations AKi+1 = L. If we denote m(Aj) = cj/Ki, then
m∗(Aj) = m(Aj) ·Ki/(Ki + s) and

P (A|s) =
∑

j:Aj⊆A

m∗(Aj), P (A|s) = m∗(L) +
∑

j:Aj∩A6=∅
m∗(Aj).

The above also follows from an interpretation of the hyperparameter s as the number of hidden observations[18].
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Table 2: Lower and upper distribution functions by s = 1
r A Z1( A) Z2( A) F i(r|1) F i(r|1)
0 {0, 1, 2, 3} 5 5 1 1
1 {1, 2, 3} 4 5 0.667 1
2 {2, 3} 2 2 0.333 0.5
3 {3} 1 1 0.166 0.333

3.4.2 Robust interpretation

The obtained probabilities can be also considered in the framework of robust ε-contaminated models[25].
As pointed out by Seidenfeld and Wasserman in the discussion of Walley’s paper[18], the IDM has the same
lower and upper probabilities as the ε-contaminated model (a class of probabilities which for fixed ε ∈ (0, 1)
and P (A) is the set {(1− ε)P (A)+ εQ(A) : Q is arbitrary}). Here P (A) = n(A)/Ki and ε = s/(Ki + s), n(A)
is the number of observations of an event A. This implies that the probabilities P (A|s) and P (A|s) can be
regarded as extended (contaminated) probabilities. On one hand, this representation of the probabilities has a
clear explanation and allows us to control the bounds by changing the value of ε. On the other hand, it has a
shortcoming. By obtaining new judgments or observations, the value of ε has to be changed and it is difficult
to define rules for doing that. As pointed out by Walley[18], s must not depend on the number of judgments.
This implies that the hyperparameter s remains without changes and the lower and upper probabilities depend
only on Ki.

3.5 Probability distribution functions of the component states

By knowing the lower and upper probabilities of arbitrary subsets of states, the lower F i(r|s) and upper
F i(r|s) bounds for the probability distribution function of the component states can be calculated by a certain
value of s. In this case, we have to calculate the probabilities of subsets A = {r, r+1, ...,m} for all r = 0, ...,m.
It follows from Proposition 1 that

F i(r|s) =
Z1({r, ..., m})

Ki + s
=

∑
j:A

(i)
j ⊆{r,...,m} 1

Ki + s
, (1)

for r ≥ 1 and F i(r|s) = 1 for r = 0. The upper bound is

F i(r|s) =
Z2({r, ...m}) + s

Ki + s
=

Ki −
∑

j:A
(i)
j ∩{r,...,m}=∅ 1 + s

Ki + s
. (2)

For example, suppose that we have a 4-state component and five observations (Ki = 5) of states at time
t: A

(i)
1 = {1, 2}, A

(i)
2 = {1, 2}, A

(i)
3 = {0, 1}, A

(i)
4 = {3}, A

(i)
5 = {2}. By using (1) and (2) we compute the

probability distributions shown in Table 2.

Proposition 2 Denote a
(i)
j = inf A

(i)
j and a

(i)
j = sup A

(i)
j . The lower F i(r|s) and upper F i(r|s) dis-

tribution functions are step-wise functions with jumps at points from sets A =
{

a
(i)
j , j = 1, ..., Ki

}
and

B =
{

a
(i)
j , j = 1, ..., Ki

}
, respectively. Moreover, if s > 0, then F i(0|s) = 1.

It follows from Proposition 2 that (1) and (2) can be rewritten as

F i(r|s) =

∑
j:a

(i)
j ≥r

1

Ki + s
, F i(r|s) =

Ki −
∑

j:a
(i)
j <r

1 + s

Ki + s
=

∑
j:a

(i)
j ≥r

1 + s

Ki + s
. (3)

It is worth noticing that the above bounds do not depend on the number of states of components and are
defined only intervals A

(i)
j . This interesting feature will be used by analyzing the CS systems.
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Let us consider a case of total ignorance about states of the i-th component. Before making any observa-
tions, we have Ki = 0 and the set of intervals A

(i)
j is empty. It follows from (3) in this case that the prior

distribution function has the bounds F i(r|s) = 0 and F i(r|s) = 1 for all r and s > 0. When nothing is known
about a component in advance, then it is natural that some “true” probability distribution may be arbitrary
in the interval [0, 1].

Let us consider a case when Ki → ∞, i.e., we have infinitely many observations. If all observations are
precise, i.e., a

(i)
j = a

(i)
j , then

∑
j:a

(i)
j ≥r

1/Ki = ni/Ki,
∑

j:a
(i)
j <r

1 = 1− ni/Ki.

Hence F i(r|s) = F i(r|s). In this case, the finite hyperparameter s does not impact on the resulting reliability
measures.

3.6 Updating the component reliability measures

Since Dirichlet distributions are conjugate priors (they generate Dirichlet posterior distributions), then the
procedure of updating the component reliability measures is very simple. By observing a new event A

(i)
k such

that a
(i)
k = inf A

(i)
k ≥ r, expressions (3) are updated as F

updated

i (r|s) = F i(r|s) and

F updated
i (r|s) =

1 + (Ki + s)F i(r|s)
Ki + s + 1

= F i(r|s) +
(F i(r|s))−1 − 1

Ki + s + 1
≥ F i(r|s).

If a
(i)
k = sup A

(i)
k < r, then F updated

i (r|s) = F i(r|s) and

F
updated

i (r|s) = F i(r|s)− (1− F i(r|s))−1 − 1
Ki + s + 1

≤ F i(r|s).

If a
(i)
k < r and a

(i)
k ≥ r, then F

updated

i (r|s) = F i(r|s) and F updated
i (r|s) = F i(r|s). It can be seen from the

above results that the imprecision of estimates is reduced after obtaining new observations.

4 Multi-state system reliability measures

Proposition 3 Suppose that the k-th set Ψk of probability distribution functions of the random variable Xk

defined on the sample space {0, ..., m} is restricted by lower and upper distributions (3). Let S(X) be a
monotone non-decreasing function of n independent random variables X = (X1, ..., Xn) (structural function
of a system). Denote a

(i)
0 = 0 and a

(i)
0 = m. Then the lower and upper bounds for the probability F (r) =

Pr{S(X) ≥ r} are determined as follows:

F (r|s) =
∑

V

n∏

i=1

∑
j≥0:a

(i)
j =ji

dj

Ki + s
, F (r|s) =

∑

V

n∏

i=1

∑
j≥0:a

(i)
j =ji

dj

Ki + s
. (4)

Here

dj =
{

s, j = 0
1, j 6= 0 ,

V = {(j1, ..., jn) : ji ∈ {0, 1, ..., m}, S(j1, ..., jn) ≥ r}.
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It follows from Proposition 3 that the lower F (r|s) (upper F (r|s)) bound for the probability distribution
function of states of an arbitrary monotone MS system is defined by lower (upper) bounds for the probability
distribution function of the component states. This is very important property which allows us to simplify
calculations of the system reliability measures. Moreover, we do not need to deal with all points of the
distribution functions, but only with bounds of available subsets of states. Therefore, the advantage of the
approach increases when the number of observation is rather small. At the same time, the proposed extension
of the IDM allows us to cope with insufficient statistical data about the component reliability.

It should be noted that the above algorithm can be simplified.

Corollary 1 Let us order bounds a
(i)
j and a

(i)
j and unite identical lower and upper bounds, respectively. As

a result, there are a set of different bounds b
(i)
k , k = 1, ..., Ni, and a set of different bounds b

(i)

k , k = 1, ..., Mi.
Let c

(i)
k denote the number of identical bounds a

(i)
k and e

(i)
k denote the number of identical bounds a

(i)
k such

that
∑Ni

k=1 c
(i)
k = Ki and

∑Mi

k=1 e
(i)
k = Ki. At that, there hold c

(i)
0 = s and e

(i)
0 = s. It follows from Proposition

3 that

F (r|s) =
∑

Y

n∏

i=1

c
(i)
ki

Ki + s
, F (r|s) =

∑

Z

n∏

i=1

e
(i)
ki

Ki + s
.

Here
Y = {(b(1)

k1
, ..., b

(n)
kn

) : S(b(1)
k1

, ..., b
(n)
kn

) ≥ r},

Z = {(b(1)

k1
, ..., b

(n)

kn
) : S(b

(1)

k1
, ..., b

(n)

kn
) ≥ r}.

It can be seen from Corollary 1 that we do need to enumerate all states of components, but we can deal
only with bounds of observations, i.e., we deal only with a restricted number of states coinciding with bounds
of the observations. This is an important fact allowing us to simplify the computation procedure for reliability
analysis of CS systems.

A flow chart of the computational algorithm to compute the lower bound F (r|s) for the probability dis-
tribution function of the system states is shown in Fig. 1. The upper bound F (r|s) can be computed in the
same way if to replace b

(i)
j by b

(i)

j , c
(i)
k by e

(i)
k and Ni by Mi.

4.1 Special cases

4.1.1 Series system

A series structure is such that S(X) = min(x1, x2, . . . , xn). It is known that the probability distribution
function of the system states F (r) is expressed through the probability distribution functions of the component
states as F (r) = F1(r) · · · Fn(r). It follows from (3) and Proposition 3 that

F (r|s) =
n∏

i=1

∑
j:a

(i)
j ≥r

1

Ki + s
, F (r|s) =

n∏

i=1

∑
j:a

(i)
j ≥r

1 + s

Ki + s
.

If all data are precise, i.e., we have c
(i)
j precise (a(i)

j = a
(i)
j ) observations of the j-th state for the i-th

component, j = 1, ...,m, i = 1, ..., n, then

F (r|s) =
n∏

i=1

∑m
j=r c

(i)
j

Ki + s
, F (r|s) =

n∏

i=1

∑m
j=r c

(i)
j + s

Ki + s
.

9



Figure 1: A flow chart to compute F (r|s)
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4.1.2 Parallel system

A parallel structure is such that S(X) = max(x1, x2, . . . , xn). It is known that the probability distribution
function of the system states F (r) is expressed through the probability distribution functions of the component
states as F (r) = 1− (1− F1(r)) · · · (1− Fn(r)). It follows from (3) and Proposition 3 that

F (r|s) = 1−
n∏

i=1

∑
j:a

(i)
j <r

1 + s

Ki + s
, F (r|s) = 1−

n∏

i=1

∑
j:a

(i)
j <r

1

Ki + s
.

If all data are precise, i.e., we have c
(i)
j precise observations of the j-th state for the i-th component, j = 1, ...,m,

i = 1, ..., n, then

F (r|s) = 1−
n∏

i=1

∑r−1
j=0 c

(i)
j + s

Ki + s
, F (r|s) = 1−

n∏

i=1

∑r−1
j=0 c

(i)
j

Ki + s
.

5 Reliability analysis of continuum-state systems

Now we consider a CS system whose components are in states from the interval L = [0, T ], T ∈ R+. Note
that we can not simply extend the results obtained for MS systems on CS systems because the number of
states is infinite and the Dirichlet model has infinitely many variables. However, it can be seen that the set
of intervals A

(i)
j about states of the i-th component divides the interval [0, T ] of all states of the component

into a set of non-intersecting “smallest” intervals covering all states of the component. The term “smallest”
means that there is total ignorance about states inside these intervals and we can not assign probability masses
to some parts of the interval. How to find the smallest intervals? Let {k} = {(k1, ..., kKi+1)} be a set of all
binary vectors consisting of Ki +1 components such that kj ∈ {0, 1}. For every vector k, we define the interval
Bk ⊆ [0, T ] (k = 1, ..., 2Ki+1) as follows:

Bk =


 ⋂

j:kj=1

A
(i)
j


 ⋂


 ⋂

j:kj=0

(
A

(i)
j

)c


 , kj ∈ k.

Here A
(i)
Ki+1 = [0, T ] and

(
A

(i)
j

)c

is the complement of A
(i)
j . By uniting possible identical intervals Bk obtained

in case of identical intervals A
(i)
j and “empty” intervals obtained only from complements of A

(i)
j , we divide

the interval [0, T ] into a set of M non-intersecting intervals Bk such that B1 ∪ ... ∪ BM = Ω, M ≤ 2Ki+1.
Moreover, every interval A

(i)
j can be represented as the union of a finite number of intervals Bk. For example,

suppose that we observe intervals of states: A1 = [6, 14], A2 = [4, 9], A3 = [2, 11], A4 = [4, 9] and T = 100.
Then intervals Bk are of the form: B2 = [2, 4], B3 = [4, 6], B4 = [6, 9], B5 = [9, 11], B6 = [11, 14], and
B1 ∪B7 = [0, 2] ∪ [14, 100].

In sum, the continuous set of states [0, T ] is reduced to a discrete sample space with M elements. It will be
shown below that intervals Bk are not important for reliability analysis. We need them only for constructing
the Dirichlet model.

Let us return to the urn model considered in Section 3. Every interval Bk now is associated with a urn.
By constructing the set of multinomial model, we do not need to know the size of intervals Bk. Therefore, all
the expressions (Proposition 1) proved for MS components are valid for CS systems.

It follows from (1) and (2) that the lower bound for the probability distribution functions of the i-th
component states is

F i(r|s) =

∑
j:A

(i)
j ⊆[r,T ]

1

Ki + s
=

∑
j:a

(i)
j ≥r

1

Ki + s
,

for r > 0 and F i(r|s) = 1 for r = 0. The upper bound is

F i(r|s) =

∑
j:A

(i)
j ∩[r,T ]6=∅ 1 + s

Ki + s
=

∑
j:a

(i)
j ≥r

1 + s

Ki + s
,
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for r < T and F i(r|s) = 0 for r = T .
Since the lower and upper probability distribution functions are step-wise functions (see Proposition 2),

then the corresponding density functions are the weighted sum of Dirac functions δ(x − xi) which have unit
area concentrated in the immediate vicinity of some points xi, i.e.,

qi(x) =
Ki+1∑

k=1

ckδ(x− xk),

where
∑Ki+1

k=1 ck = 1, xk ∈ [0, T ].

Proposition 4 Proposition 3 and Corollary 1 are valid under condition that the random variable Xk is defined
on the sample space [0, T ].

Proposition 4 implies that the reliability calculations for CS systems do not differ from the described
algorithm for calculating the reliability measures of MS systems.

6 Numerical example

Let us analyze the offshore electrical power generation system considered by Natvig et al.[26]. The system
consists of two generators and a control unit. Each of the generators can (if working properly) supply an oil
rig with a sufficient amount of power, and hence only one generator is normally working while the other is in
cold standby. If the operating generator experiences trouble, then the control unit is responsible for starting
the spare generator. Each of the two generators can be in any of three states {0, 1, 2}. The control unit can
also be in any of three states: {0 (halts the operating generator without starting the spare), 1 (fails to start
the spare generator), 2 (operating properly). The amount of power that can be supplied to the platform is
represented by a MS structure function

S(x1, x2, x3) = 1x1>0 ·min(x2 + x3 · 1x2=2, 2).

where x1 denotes states of the control unit, x2 and x3 denote states of two generators, and 1 is the indicator
function.

Suppose that preliminary unreliable observations of the components give the following interval-valued
states:

1. the control unit: 4 times {1}, 3 times {1,2}.
2. generators: 2 times {0}, 1 time {1,2}, 1 time {0,1}.
The initial estimates can be formalized as follows:
1. The control unit: a

(1)
j = a

(1)
j = 1 , j = 1, ..., 4, a

(1)
j = 1, a

(1)
j = 2, j = 5, 6, 7.

2. Generators (i = 2, 3): a
(i)
j = a

(i)
j = 0, j = 1, 2, a

(i)
3 = 1, a

(i)
3 = 2, a

(i)
4 = 0, a

(i)
4 = 1.

We additionally write a
(i)
0 = 0, a

(i)
0 = 2, i = 1, 2, 3. Let s = 1. At first, we find the probability distribution

functions of the component states:
1. The control unit:

F 1(0|1) = 1, F 1(0|1) = 1,

F 1(1|1) = 7/8, F 1(1|1) = 1,

F 1(2|1) = 1/8, F 1(2|1) = 4/8.

2. Generators (i = 2, 3):

F i(0|1) = 1, F i(0|1) = 1,

F i(1|1) = 1/5, F i(1|1) = 3/5,

F i(2|1) = 0, F i(2|1) = 2/5.

12



By ordering the lower a
(i)
j and upper a

(i)
j bounds, we get the sets

b
(1)
0 = 0, b

(1)
1 = 1, b

(1)

0 = 2, b
(1)

1 = 1, b
(1)

2 = 2,

c
(1)
0 = s, c

(1)
1 = 7, e

(1)
0 = s, e

(1)
1 = 4, e

(1)
2 = 3,

b
(i)
0 = 0, b

(i)
1 = 0, b

(i)
2 = 1, b

(i)

0 = 2, b
(i)

1 = 0, b
(i)

2 = 1, b
(i)

3 = 2, i = 1, 2,

c
(i)
0 = s, c

(i)
1 = 3, c

(i)
1 = 1, e

(i)
0 = s, e

(i)
1 = 2, e

(i)
2 = 1, e

(i)
3 = 1, i = 1, 2.

By using Corollary 1 and the algorithm depicted in Fig. 1, we get the probability distribution functions of
the system states

F (0|1) = 1, F (0|1) = 1,

F (1|1) = 0.175, F (1|1) = 0.6,

F (2|1) = 0, F (2|1) = 0.4.

Note that if we take s = 0, then

F (0|0) = 1, F (0|0) = 1,

F (1|0) = 0.25, F (1|0) = 0.5,

F (2|0) = 0, F (2|0) = 0.25.

It can be seen from the above results that the reliability measures obtained by s = 1 are more cautious
than the same measures by s = 0. At the same time, they are more imprecise.

7 Conclusion

The simple expressions for lower and upper probability distribution functions of states of MS and CS
systems have been proposed in the paper under condition that initial data about reliability of components are
represented in the form of interval-valued observations or measurements. The obtained reliability measures
can be also interpreted in terms of random set theory and robust statistical models. The main virtue of the
proposed expressions and the algorithm for their calculation is that they can be applied in the case when the
number of observations or measurements is rather small. This is provided by varying the hyperparameter s
of the IDM. The second virtue of the proposed algorithm for computing the reliability measures is that it can
be applied to both MS and CS systems without an additional adaptation.

It should be noted that the expressions and the algorithm for computing probability distribution functions
of the system states have been considered in the paper. However, different reliability measures can be simply
obtained from these measures.

8 Appendix

Proof of Proposition 1: Note that infα∈S(1,m+1) α(A) is achieved at α(A) = 0 and supα∈S(1,m+1) α(A)
is achieved at α(A) = 1 except a case when A = L. If A = L, then α(A) = 1 for the minimum and maximum.
In order to find the minimum and maximum of nk(A) we consider three types of subsets A

(i)
j1 , A

(i)
j2 , A

(i)
j3

produced by observations such that A
(i)
j1 ⊆ A, A

(i)
j2 ∩ A = ∅, A

(i)
j3 ∩ A 6= ∅ and A

(i)
j3  A. It is obvious that

balls corresponding to sets A
(i)
j1 belong to the set A and nk(A) can not be less than

∑
j:A

(i)
j1 ⊆A

1. On the

other hand, balls corresponding to sets A
(i)
j2 do not belong to A. This implies that nk(A) can not be greater

than Ki −
∑

j:A
(i)
j2 ∩A=∅ 1. Balls corresponding to A

(i)
j3 may belong to A, but it is not necessary. Therefore,

min nk(A) =
∑

j:A
(i)
j ⊆A

1 and max nk(A) = Ki −
∑

j:A
(i)
j ∩A=∅ 1, as was to be proved.
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Proof of Proposition 2: Note that A
(i)
j ⊆ {r, ...,m} if a

(i)
j ≥ r. Suppose that the points r /∈ A and

r + 1 /∈ A. This implies that if A
(i)
j ⊆ {r, ..., m}, then a

(i)
j > r. However, a

(i)
j 6= r + 1 because r + 1 /∈ A.

Consequently, a
(i)
j > r + 1 and A

(i)
j ⊆ {r + 1, ..., m}. It follows from (1) that F i(r|s) − F i(r + 1|s) = 0.

Suppose now that r ∈ A and r = a
(i)
j . This implies that A

(i)
j ⊆ {r, ...,m} and A

(i)
j  {r + 1, ..., m}. Hence

F i(r|s) ≥ F i(r|s). Therefore, jumps of the lower distribution function are at points a
(i)
j . The proof for the

upper distribution function is similar if to take into account that A
(i)
j ∩ {r, ..., m} = ∅ if a

(i)
j < r.

Proof of Proposition 3: Denote qk(x) = Fk(i)− Fk(i + 1), where Fk ∈ Ψk. Then

Pr{S(X) ≥ r} =
∑

S(X)≥r

n∏

k=1

qk(xk).

Since S(X) is non-decreasing with every variable, then we can rewrite the above equality as follows:

Pr{S(X) ≥ r} =
m∑

z=0

ql(z)Q(z),

where

Q(z) =
∑

S(Xz)≥r

n∏

k=1,k 6=l

qk(xk), S(Xz) = S(x1, ..., zl, ..., xn).

Since ql(z) = Fl(z)− Fl(z + 1), then

Pr{S(X) ≥ r} =
m∑

z=0

(Fl(z)− Fl(z + 1)) Q(z)

= D +
m−1∑
z=0

Fl(z + 1) [Q(z + 1)−Q(z)] ,

where D = Fk(0)Q(0)− Fk(m + 1)Q(m) is some finite real number.
Since S(X) is non-decreasing, then

S(x1, ..., z1, ..., xr) ≥ S(x1, ..., z2, ..., xr) ≥ r

for z1 ≥ z2, and the number of terms of the sum for computing Q increases as z increases. This implies
that Q(z) is non-decreasing with z and Q(z + 1) − Q(z) ≥ 0. Consequently, in order to minimize (maxi-
mize) Pr{S(X) ≥ r}, we have to take Fl(z) as smaller (larger) as possible, i.e., the minimum (maximum) of
Pr{S(X) ≥ r} is achieved at Fl = F l (Fl = F l). However, it follows from Proposition 2 that the lower (upper)
distribution function is completely defined by a

(i)
j (a(i)

j ). Then

minPr{S(X) ≥ r} =
∑

V

n∏

k=1

q
k
(jk|s), maxPr{S(X) ≥ r} =

∑

V

n∏

k=1

qk(jk|s).

Here q
k
(j|s) = F k(j|s) − F k(j + 1|s), qk(j|s) = F k(j|s) − F k(j + 1|s), F k(m + 1|s) = F k(m + 1|s) = 0,

F k(0|s) = 1. It follows from (3) that

F k(r|s)− F k(r + 1|s) =
∑

j:a
(i)
j =r

1/(Ki + s),

F k(r|s)− F k(r + 1|s) =
∑

j:a
(i)
j =r

1/(Ki + s).
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If r = 0, then
q

k
(0|s) = F k(0|s)− F k(1|s) = s/(Ki + s) +

∑

j:a
(i)
j =0

1/(Ki + s).

If r = m, then
qk(m|s) = F k(m|s)− 0 = s/(Ki + s) +

∑

j:a
(i)
j =m

1/(Ki + s).

This completes the proof.
Proof of Corollary 1: Suppose that for some value jk in the vector (j1, ..., jn) from V there is no a

(k)
j

such that a
(k)
j = jk. This implies that the product in (4) is 0. Consequently, non-zero products take place if

there exist a
(k)
j such that a

(k)
j = jk for all k = 1, ..., n. This implies that the set V can be reduced to the set

Y . The following proof is obvious.
Proof of Proposition 4: The proof is similar to the proof of Proposition 3 except the following. Let

qk(x) = dFk(x)/dx. Then

Pr{S(X) ≥ r} =
∫
· · ·

∫

S(X)≥r

n∏

k=1

qk(xk)dX.

Hence

Pr{S(X) ≥ r} =
∫ T

0

ql(z)Q(z)dz,

where

Q(z) =
∫
· · ·

∫

S(x1,...,z,...,xr)≥r

n∏

k=1,k 6=l

qk(xk)dX.

By integrating by parts, we get

Pr{S(X) ≥ r} = A−
∫ T

0

Ft(z)
dQ(z)

dz
dz.

Here A = Ft(∞)Q(∞) − Ft(−∞)Q(−∞) is some finite real number. Q(z) is non-decreasing with z and
dQ(z)/dz ≥ 0. Since the density functions qk(xk) are the weighted sum of Dirac functions, then the following
proof is similar to the proof of Proposition 3 and Corollary 1.
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