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Abstract. The paper discusses the important aspects of the reliability of systems
with an imprecise general model of the structure function. It is assumed that the
information about reliability behavior of components is restricted by the mean
levels of component performance. In this case the classical reliability theory can-
not provide a way for analyzing the reliability of systems. The theory of impre-
cise probabilities may be a basis in developing a general reliability theory which
allows us to solve such problems. The basic tool for computing new reliability
measures is the natural extension which can be regarded as a linear optimization
problem. However, the linear programming computations will become imprac-
ticable when the number of components in the system is large. Therefore, the
main aim of the paper is to obtain explicit expressions for computing the system
reliability measures. We analyze the reliability of general structures and typical
systems. The numerical examples illustrate the usefulness of the presented ap-
proach to reliability analyzing.

Keywords: reliability, imprecise probabilities, multistate systems, previsions, up-
per and lower probabilities.

1 Introduction

Classical reliability theory assumes that all probabilities are precise, that is, that every
probability involved is perfectly determinable. If the information we have about the
functioning of components and systems is based on a statistical analysis, then a proba-
bilistic uncertainty model should be used in order to mathematically represent and ma-
nipulate that information. However, the probabilistic assumption may be unreasonable
in a large number of cases. It very often happens that probabilities cannot be determined
exactly, either due to measurement imperfections, or due to more fundamental reasons,
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such as insufficient available information. Moreover, in some cases, the information we
have about the functioning of components and systems is not based on statistics, but
is of a linguistic nature, i.e. the information is conveyed by statements in natural lan-
guage. A part of the reliability assessments may be supplied by experts. For example,
assessments of experts may have such the forms as “The mean level of component per-
formance is more than 0.1”, “Failure before 10 hours is probable”. Other assessments
may be made by the user of the system during the experimental service. It should be
noted that in reliability theory there are a lot of analytical estimates which can be used
as an additional information, for example, independence of component failures. Lastly,
we may know nothing at all about the reliability of systems or components. Thus, the re-
liability assessments that are combined to describe systems and components may come
from various sources. How to compute the system reliability measures on the basis of
the imprecise information on the component reliability?

One of the ways to model partial or complete ignorance is through a concept called
fuzzy reliability [1–6]. However, in spite of successful application of the possibility
theory for the reliability analysis of various systems, possibility measures cannot model
many types of uncertainty.

To develop a general reliability theory taking into account the various sources of in-
formation, de Cooman proposed using the theory of imprecise probabilities (also called
the theory of lower previsions [7] and the theory of interval statistical models [8]) intro-
duced and developed by Walley [9]. A general framework for the theory of imprecise
probabilities is provided by upper and lower previsions. They can model a very wide
variety of kinds of uncertainty, partial information, and ignorance. According to this
theory, possibility measures are a special type of upper probabilities [10, 7, 11]. Wal-
ley’s theory of imprecise probabilities is arguably the most satisfactory of all current
theories of uncertain reasoning from a fundamental point of view [12]. The rules used
in the theory of lower previsions, which are based on a general procedure called natural
extension, can be applied to various measures, including possibility measures. There-
fore, this theory might be a basis to develop a general reliability theory.

In this paper we try to apply the theory of imprecise probabilities to the reliabil-
ity analysis of multistate and continuum systems. It is assumed that the information
about reliability behavior of components is restricted by bounds of the mean levels of
component performance. The basic tool for computing new reliability measures is the
natural extension which can be regarded as a linear optimization problem. However,
the linear programming computations will become impracticable when the number of
components in the system is large. Therefore, the main aim of the paper is to obtain the
explicit expressions for computing the system reliability measures. The paper is orga-
nized as follows. Section 2 is a brief introduction to the theory of imprecise probabili-
ties. The basic definitions of systems with the general structure function and notions of
the general reliability theory are considered in Sec. 3. It is shown in this section how to
apply the natural extension to the system reliability calculus. The important properties
of the natural extension are presented in Sec. 4. These properties allow us to simplify
the optimization problems associated with the natural extension. In Sec. 5 we analyze
the reliability of the general structures under condition that the component reliability is
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determined by the upper and lower mean levels of performance. In this section, series
and parallel systems are studied.

2 Gambles and Previsions

Let us briefly review the basic concepts of the theory of imprecise probabilities. All the
definitions and results introduced in this section can be found in [9, 7, 11].

Let Ω be a set called thepossibility spaceor theuniverse of discourse. It can be
interpreted as the set of the mutually exclusive possible outcomes of a specific experi-
ment. A real-valued mappingX on Ω will be called agambleon Ω iff it is bounded,
i.e. if sup X = sup{X(ω) : ω ∈ Ω} and inf X = inf{X(ω) : ω ∈ Ω} are finite
real numbers. It is interpreted as a reward which will be paid, after observing the value
of X. For example,X might denote the amount of failures that will occur during a
predefined period of time. The set of the gambles onΩ is denoted byL(Ω). Theupper
previsionof a gambleX, denoted byM(X), is a real-valued function on a class of gam-
blesK ⊆ L(Ω). It can be interpreted as an infimum selling price forX. Theconjugate
lower previsionM(X) is defined on−K = {−X : X ∈ K} by M(X) = −M(−X),
X ∈ −K. It can be interpreted as a supremum buying price forX. It is often natural to
regardM(X) andM(X) as lower and upper bounds for some ideal priceM(X) that
is not known precisely. Note that if we have an interval[M(X), M(X)] for the gamble
X ∈ K, then we can specify an interval[−M(X),−M(X)] for the gambleX ∈ −K.
This implies thatM(X) = −M(−X) andM(X) = −M(−X).

There is a special class of gambles that assume only values in{0, 1}. A subsetA =
{ω ∈ Ω : X(ω) = 1} of Ω will be called an event and theupperandlower probabilities
of the eventA are defined to be the upper and lower previsions of0−1-valued gambles.
They are related byP (A) = 1 − P (Ac), whereAc denotes the complement ofA.
Upper and lower previsions can also be regarded as generalizations of upper and lower
probabilities.

To model complete ignorance thevacuousprevisionsM(X) = inf X andM(X) =
supX are used.

Suppose that there exist the upperFX and lowerFX distribution functions ofX.
Then the upper and lower previsions can be interpreted as upper and lower expectations

M(X) =
∫ ∞

−∞
xdFX(x), M(X) =

∫ ∞

−∞
xdFX(x).

In the theory of imprecise probabilities, there are three fundamental principles:
avoiding sure loss, coherence and natural extension. Avoiding sure loss can be consid-
ered as a rationality condition. The lower previsionM(X) avoids sure loss ifsup X ≥
M(X), i.e. You should not be willing to pay more forX than the supremum amount
You can get back. Similarly, the upper previsionM(X) avoids sure loss ifM(X) ≥
inf X. Avoiding sure loss implies thatM(X) ≤ M(X) andP (A) + P (Ac) ≤ 1. Co-
herence characterizes a kind of self-consistency of previsions. Like avoiding sure loss,
coherence is proposed as a criterion of rationality. However, it is a much stronger con-
dition than avoiding sure loss [9]. The basic rules can be derived from the coherence
principle, for example:
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1. inf{X} ≤ M(X) ≤ M(X) ≤ sup{X}
2. M(cX) = cM(X), c > 0
3. M(X)+M(Y ) ≤ M(X+Y ) ≤ M(X)+M(Y ) ≤ M(X+Y ) ≤ M(X)+M(Y ).

Natural extension is a general mathematical procedure for calculating new previ-
sions from the initial judgements. It produces a coherent overall model from an arbitrary
collection of imprecise probability judgements and may be seen as the basic construc-
tive step in statistical reasoning. Natural extension summarizes the buying prices for
gambles that are implied byM andM through the linear operations involved in the
definition of coherence. For computing new previsionsM(Xs) andM(Xs) from an
available set of the previsionsM(Xi) andM(Xi), i = 1, . . . , n, the natural extension
can be used in the following form:

M(Xs) = inf
c0,ci,di

(
c0 +

n∑

i=1

(
ciM(Xi)− diM(Xi)

)
)

, (1)

whereci, di ∈ R+, c0 ∈ R, i = 1, . . . , n, and

c0 +
n∑

i=1

(ciXi − diXi) ≥ Xs, inf Xi ≤ Xi ≤ supXi, i = 1, . . . , n.

M(Xs) = −M(−Xs),

Equivalent definitions of avoiding sure loss, coherence and natural extension can be
found in [8].

3 Structure Function is a Gamble, Mean Level of Performance is a
Prevision

Let L be the set representing levels of component performance ranging from perfect
functioning supL to complete failureinf L. A generalmodel of the structure func-
tion of a system consisting ofn multistate components was considered in [13]. It can
be written asS : Ln → L. If L = {0, 1}, we have a classicalbinary system; if
L = {0, 1, . . . , m}, we have amultistatesystem; ifL = [0, T ], T ∈ R+, we have
a continuumsystem. At arbitrary timet the i-th component may be in a statexi(t).
This implies that the component is described by the random process{xi(t), t ≥ 0},
xi(t) ∈ L. Then the probability distribution function of theith component states at
time t is defined as the mappingFi : L → [0, 1] such thatFi(r) = Pr{xi(t) ≥ r}
∀r ∈ L. The state of the system is determined by states of itsn components, i.e.

S = S(X) = S(x1, . . . , xn) ∈ L.

Then the probability distribution function of the system states at timet is defined as the
mappingF : L → [0, 1] such thatF (r) = Pr{S(X) ≥ r} ∀r ∈ L.

A system ofn components with the structure functionS is called amonotonemul-
tistate system ifS(X) is increasing in each argument andS(r, . . . , r) = r ∀r ∈ L. An
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arbitrary structure function of a monotone multistate system can be expressed through
operations “min” and “max”. Properties of multistate systems can be found in [14].

Define themean level of component performancehi(t) ashi(t) = E{xi(t)}. Here
E is an expectation operator. For a system, we write the mean level of system perfor-
manceh(t) ash(t) = E{S(X)}.
Example 1.Consider a multistate system consisting of two components with the struc-
ture function{0, 1, 2}2 → {0, 1, 2} given in Table 1. From Table 1 we can see that there
holdsS(X) = min(x1, x2). Here

hi(t) =
2∑

k=1

k Pr{xi(t) = k} =
2∑

k=1

Pr{xi(t) ≥ k} =
2∑

k=1

Fi(k),

h(t) =
2∑

k=1

k Pr{S(x1, x2) = k} =
2∑

k=1

Pr{S(x1, x2) ≥ k} =
2∑

k=1

F (k).

Table 1.Structure function of the series system

x1

x2
0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

Example 2.Consider a system consisting of two components with the structure func-
tion S : [0, 1]2 → [0, 1] such thatS(X) = min(x1, x2). Then the following hold:

hi(t) =
∫ 1

0

Fi(z)dz,

h(t) =
∫ 1

0

F (z)dz =
∫ 1

0

F1(z)F2(z)dz.

Suppose that the state probabilities of components are unknown. However, we can
obtain lowerhi(t) and (or) upperhi(t) bounds of mean levels of component perfor-
mance from experts (in particular,hi(t) = hi(t)). How to find boundsh(t) andh(t) of
mean levels of system performance? We can see that variablesxi(t), i = 1, . . . , n, and
S(X) can be considered as gambles because their values are uncertain.

Suppose that there exist the upperF i and lowerF i probability distribution func-
tions of theith component states at timet. Then there holdhi(t) = E∗{xi(t)} and
hi(t) = E∗{xi(t)}, whereE∗ andE∗ are the expectation operators corresponding to
upper and lower distribution functions, respectively. This implies that the lower (upper)
mean levels of performance are the lower (upper) previsions and we can use the prin-
ciples of the imprecise probabilities theory for computingh(t) andh(t). We assume
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that previsionshi(t) andhi(t), i = 1, . . . , n, satisfy the rationality conditions, i.e. they
avoid sure loss and are coherent.

To model complete ignorance for theith component the vacuous previsionshi(t) =
inf L andhi(t) = sup L can be used. In a special caseL = {0, 1}, we have the binary
coherent system with the structure functionS : {0, 1}n → {0, 1}. For this system,
gamblesxi assume only values in{0, 1}, where1 corresponds to the operating state.
Therefore, the valueshi(t) andhi(t) can be considered as lower and upper probabilities
of the operating state of theith component,i = 1, . . . , n. For example, if the statement
“functioning of component is probable at time10 h” conveys information about the
reliability of the ith component, thenhi(10) = 0.5 andhi(10) = 1 (the vacuous pre-
vision). The valuesh(t) andh(t) are the lower and upper probabilities of the system
operating state.

In the following, we shall omit variablet for brevity.
In order to use the available information for computing mean levels of system per-

formance we can make various assumptions. For example, we may assume that the
time to failure is a random variable governed by the exponential probability distribution
and apply methods of the classical reliability theory. We may also assume that the time
to failure is a fuzzy variable and apply known methods of the fuzzy reliability theory
[1–3]. However, all the additional assumptions may be in contradiction with the real
behavior of systems or may be unreasonable in a wide scope of cases. Therefore, for
computing the system reliability measures, we have to take into account only the avail-
able information. This can be done by means of rules of the imprecise probabilities
theory.

For computing the lower previsionh from an available set of the component previ-
sionshi(t) andhi(t), i = 1, . . . , n, the natural extension can be used in the following
form:

h = sup
c0,ci,di

(
c0 +

n∑

i=1

(
cihi − dihi

)
)

, (2)

whereci, di ∈ R+, c0 ∈ R, i = 1, . . . , n, and

c0 +
n∑

i=1

(cixi − dixi) ≤ S(X), xi ∈ L.

For computing the upper previsionh, the natural extension can be used in the fol-
lowing form:

h = inf
c0,ci,di

(
c0 +

n∑

i=1

(
cihi − dihi

)
)

, (3)

c0 +
n∑

i=1

(cixi − dixi) ≥ S(X), xi ∈ L.

Here we do not assume that events of failures of components are independent, i.e.
mean levels of one component performance would not change if we learned whether or
not the failure of other component occurred. Thus, we do not have to know whether the
observations are independent.
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So, new previsionsh andh can be computed as solutions to linear programming
problems. However, the linear programming computations will become impracticable
when the number of components in the system is large. Therefore, we will consider
several special cases, for which natural extensions can be computed explicitly, without
linear programming.

4 Preliminary Results

DenoteC = (c1, . . . , cn), X = (x1, . . . , xn)T,

D =
n∏

i=1

[0, T ] ⊂ Rn,

D∗ = {(T (i1), . . . , T (in)) | ij = 0, 1, j = 1, . . . , n, T (0) = 0, T (1) = T}.
We assume that the inequalityX < Y means that∀i, xi < yi, xi andyi arei-th

components of vectorsX andY, respectively.

Theorem 1. Suppose that
1. S(X) ≥ 0, X ∈ D;
2. S(X) is a non-decreasing continuous function;
3. For eachX, there exists a numberi0 such thatS(X) = xi0 , wherexi0 is a component
of the vectorX.
Then
1. the system of inequalitiesc0 + CX ≥ S(X), C ≥ 0, is valid for∀X ∈ D iff it is
valid for ∀X ∈ D∗;
2. the system of inequalitiesc0 + CX ≤ S(X), C ≥ 0, is valid for∀X ∈ D iff it is
valid for ∀X ∈ D∗.

Proof. (If part). The proof is obvious becauseD∗ ⊂ D.
(Only if part). Denote

D(i1, . . . , in) = {X : xi1 ≥ xi2 ≥ · · · ≥ xin} ⊂ Rn.

Without loss of generality, supposeX ∈ D(1, 2, . . . , n). Introduce forD(1, . . . , n) a
basis with non-negative coefficientsdi, i = 1, . . . , n. It can be the following set of
vectors{a1, . . . ,an} ∈ D(1, 2, . . . , n):

ai = (T, . . . , T︸ ︷︷ ︸
i times

, 0, . . . , 0︸ ︷︷ ︸
n−i times

)T, i = 1, . . . , n

Note thatak ∈ D∗. Then we have to prove that if the inequalityc0 + Cak ≥ S(ak) is
valid, thenc0 + CX ≥ S(X) is valid.

Note thatX =
∑n

i=1 diai. Indeed, there holds

xi =
n∑

k=i

dkT. (4)
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Hence

dn =
xn

T
, dn−1 =

xn−1 − xn

T
, . . . , d1 =

x1 − x2

T
.

Sincexk−1 − xk ≥ 0 for all k = 2, . . . , n, (X ∈ D(1, 2, . . . , n)), thendk ≥ 0 for all
k = 1, . . . , n. Moreover, there holds

∑n
i=1 di = x1/T ≤ 1.

Let c0 + Cak ≥ S(ak) be valid. By substitutingX =
∑n

i=1 diai into c0 + CX ≥
S(X), we obtain

c0 + CX =c0 +
n∑

k=1

dkCak ≥ c0 +
n∑

k=1

dk(S(ak)− c0)

= c0 +
n∑

k=1

dkS(ak)− c0

n∑

k=1

dk = c0

(
1−

n∑

k=1

dk

)
+

n∑

k=1

dkS(ak).

Let us prove thatS(X) =
∑n

k=1 dkS(ak). Suppose thatS(X) = xj ,X ∈ D(1, 2, . . . , n).
We have to prove that for∀X ∈ D(1, 2, . . . , n) there holdsS(X) = xj . We shall divide
the setD(1, 2, . . . , n) into n disjoint subsets

Di = {X ∈ D(1, 2, . . . , n) : S(X) = xi}, i = 1, . . . , n.

Since the functionS(X) is continuous, then subsetsDi are closed and there holds
D(1, 2, . . . , n) =

⋃n
i=1 Di. Now we have to prove that one of the subsetsDi, i =

1, . . . , n, is non-empty and other subsets are empty. In this case there holdsD(1, 2, . . . , n) =
Di. Denote

⋃n
i=2 Di = D∗

1 . ThenD(1, 2, . . . , n) = D1 ∪D∗
1 . Note thatD∗

1 is closed
as a union of the finite number of closed sets. Moreover,D1 ∩ D∗

1 = ∅. We have to
prove thatD1 = ∅, D∗

1 6= ∅ or D∗
1 = ∅, D1 6= ∅. Conversely, assume thatD1 6= ∅ and

D∗
1 6= ∅. Then there existX1 ∈ D1 andX2 ∈ D∗

1 . A line segment joining pointsX1

andX2 contains a pointX = (1 − t)X1 + tX2, t ∈ [0, 1]. This line segment belongs
to D(1, 2, . . . , n) due to convexity ofD(1, 2, . . . , n). There existst0 ∈ (0, 1) such that
if t ≤ t0, thenX ∈ D1, if t > t0, thenX ∈ D∗

1 . Indeed, byt ≤ t0 we consider a
sequencetn → t0 + 0. Then for all the pointsXn there holdsXn ∈ D∗

1 and a limit
point belongs toD1. This implies thatD∗

1 is not closed, a contradiction. A similar con-
clusion can be obtained for the caset > t0. If D∗

1 = ∅, thenD(1, 2, . . . , n) = D1

andS(X) = x1. If D1 = ∅, thenD(1, 2, . . . , n) = D∗
1 . By dividing the setD∗

1 and
repeating this argument, we obtain one set.

Sinceai ∈ D(1, 2, . . . , n), thenS(a1) = · · · = S(aj−1) = 0, S(aj) = · · · =
S(an) = T . It follows from (4) that

n∑

k=1

dkS(ak) =
n∑

k=j

dkT = xj = S(X).

Sincec0 ≥ 0 and
∑n

k=1 dk ≤ 1, then there hold

c0 + CX ≥ c0

(
1−

n∑

k=1

dk

)
+ S(X) ≥ S(X).
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This completes the proof.
The second conclusion is proved similarly by taking into account the conditionc0 ≤

0.

Theorem 1 is very important because it allows us to regard the systems with the gen-
eral structure function as a two-state system. The conclusion of Theorem 1 essentially
reduces the complexity of optimization problems (2) and (3).

Theorem 2. Suppose thatS(X) is a non-decreasing function andS(X) ≥ 0, X ∈ D.
Then problem (2) is equivalent to the following problem

h = sup
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
, (5)

subject toc0 + CX ≤ S(X), X ∈ D.

Proof. Denoteei = ci − di, ei ∈ R. If xi ≥ 0 andS(X) ≥ 0, then problem (2) can be
rewritten as follows:

h = sup
c0,C≥0,ei

(
c0 +

n∑

i=1

(
cihi − cihi + eihi

)
)

,

c0 +
n∑

i=1

eixi ≤ S(X), xi ∈ L.

Sincedi ≥ 0, thenci ≥ ei. Sincehi − hi ≥ 0, then the objective function is maximal
whenci = min{0, ei}, i = 1, . . . , n. Hence

h = sup
c0,ei

(
c0 +

n∑

i=1

min(eihi, eihi)

)
, (6)

c0 +
n∑

i=1

eixi ≤ S(X), xi ∈ L, ei ∈ R.

Assume thatci = ei, i = 1, . . . , n. Note that(c0, 0, . . . , 0) is a feasible point of
problem (6) and for this point the value of the objective function is equal toc0. Denote
N = {1, 2, . . . , n} and

c̃k =
{

ck, k /∈ J
0, k ∈ J

, x̃k =
{

xk, k /∈ J
0, k ∈ J

.

If (c0, c1, . . . , cn) is a feasible solution and for values of a setJ ⊂ N there holdsck < 0
for all k ∈ J , then(c0, c̃1, . . . , c̃n) is a feasible solution corresponding to a greater value
of the objective function. Indeed, assuming an inequalityc0+CX ≤ S(X) thatxk = 0
for all k ∈ J and by using the properties of the functionS, we obtain

c0 +
∑

i∈N

c̃ixi = c0 +
∑

i∈N\J
cixi ≤ S(x̃1, . . . , x̃n) ≤ S(x1, . . . , xn).

Thus, we can accept thatck ≥ 0 for all k ∈ J . Since the setJ can be arbitrary, then
there holdsC ≥ 0 and problem (6) is equivalent to problem (5), as was to be proved.
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Theorem 2 implies that the lower prevision of a system depends only on lower previ-
sions of primary gambles. In other words, the lower mean level of system performance
depends only on lower mean levels of component performances.

Theorem 3. Suppose thatS(X) is a non-decreasing function andS(X) ≥ 0, X ∈ D∗.
Then problem (3) is equivalent to the following problem

h = inf
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
, (7)

subject toc0 + CX ≥ S(X), X ∈ D∗.

Proof. Problem (3) can be rewritten as follows (see the proof of Theorem 2):

h = inf
c0,ci

(
c0 +

n∑

i=1

max(cihi, cihi)

)
,

c0 +
n∑

i=1

cixi ≥ S(X), xi ∈ L, ci ∈ R.

According to Theorem 1, the optimal solution can be found only forX ∈ D∗. There-
fore, we can rewrite problem (3) as follows:

h = inf
c0,ci

(
c0 +

n∑

i=1

max(cihi, cihi)

)
, (8)

c0 +
∑

i∈I

ciTi ≥ S(TI),

whereI is an arbitrary set of indices;TI is a vector with non-zero componentsTi,
i ∈ I.

If I is empty, thenS(TI) = 0 andc0 ≥ 0. Let us prove that the optimal solution
is achieved byci ≥ 0, i = 1, . . . , n. Let C∗ = (c∗0, c

∗
1, . . . , c

∗
n) be an optimal solution.

DenoteI− = {i : c∗i ≤ 0}, I+ = {i : c∗i ≥ 0}. Then for anyI, the following inequality
is valid:

c∗0 +
∑

i∈I

c∗i Ti ≥ S(TI). (9)

Hence
h = c∗0 +

∑

i∈I+

c∗i hi +
∑

i∈I−

c∗i hi.

Note that inequality (9) is valid for the empty setI. Consider a solutioñC = (c̃0, c̃1, . . . , c̃n),
where

c̃0 = c∗0 +
∑

i∈I−

c∗i hi, c̃i =
{

c∗i , i ∈ I+

0, i ∈ I−
.
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Let us show that̃C is the feasible solution, i.e.

c̃0 +
∑

i∈I+

c̃ixi +
∑

i∈I−

c̃ixi ≥ S(X).

Let J0 = {i : xi = 0}, J+ = {i : xi = Ti}. DenoteT̂ = (x1, . . . , xn), where

xi =
{

Ti, i ∈ J+

0, i ∈ J0
.

DenoteT̃ = (T̃1, . . . , T̃n), where

T̃i =
{

Ti, i ∈ J+ ∪ (I− ∩ J0)
0, i /∈ J+ ∪ (I− ∩ J0)

.

Then

c∗0 +
∑

i∈I−

c∗i Ti +
∑

i∈I+∩J+

c∗i Ti = c∗0 +
∑

i∈J+

c∗i Ti +
∑

i∈I−∩J0

c∗i Ti ≥ S(T̃).

This is valid due to the equalityI− = (I−∩J+)∪ (I−∩J0). Note thatT̃ ≥ T̂ because
J+ ⊂ J+ ∪ (I− ∩ J0). Hence there holdsS(T̃) ≥ S(T̂).

Now we prove thath(C̃) ≤ h(C∗). Since we assume thatc∗i ≤ 0, i ∈ I−, then

h(C̃) = c∗0 +
∑

i∈I−

c∗i Ti +
∑

i∈I+

c∗i hi ≤

c∗0 +
∑

i∈I−

c∗i hi +
∑

i∈I+

c∗i hi = h(C∗).

In sum, there holdsC ≥ 0 and problem (8) is equivalent to problem (7), as was to
be proved.

Theorem 3 implies that the upper prevision of a system depends only on upper previ-
sions of primary gambles. In other words, the upper mean level of system performance
depends only on upper mean levels of component performances.

5 Reliability of Systems

5.1 Coherent Systems with General Structure Functions

Theorem 1 implies that multistate and continuum systems can be considered as clas-
sical binary systems with the coherent structure functionS : {0, T}n → {0, T}. This
conclusion simplifies the calculation of the reliability measures of various systems. Be-
low we will study the general rules for computing the lower and upper mean levels of
system performance for arbitrary systems.

Suppose that a coherent structureS of a binary system hasp minimal pathsP1, . . . , Pp

andk minimal cutsK1, . . . ,Kk. Then according to [15], the functionS can be repre-
sented as

S(X) = max
1≤j≤p

min
i∈Pj

xi = min
1≤j≤k

max
i∈Kj

xi.

DenoteN = {1, . . . , n}.
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Theorem 4. Supposehi(t), i = 1, . . . , n, are the lower mean levels of component per-
formances. For computing the lower mean levels of system performanceh, the natural
extension can be used in the following form:

h = sup
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
, (10)

c0 +
∑

j∈N\Ki

cjT ≤ 0, i = 1, . . . , k,

c0 +
n∑

i=1

ciT ≤ T, c0 ≤ 0.

Proof. DenoteI = {i : xi = 0}. According to Theorems 1 and 2, the system of
constraints has the following form

c0 +
∑

j∈N\I
cjT ≤ S(TN\I) =

{
0
T

,

whereTN\I is a vector with non-zero componentsTj , j ∈ N\I. If I = N , thenc0 ≤ 0.
Let S(TN\I) = T . Then inequalities

c0 +
∑

j∈N\I
cjT ≤ T, ∀I 6= ∅,

follow from the inequalityc0 +
∑n

i=1 ciT ≤ T . Let S(TN\I) = 0. The system fails if
all components belonging to a minimal cut set fail. This implies thatI ⊃ Ki or I = Ki.
Let I ⊃ Ki. Then inequalities

c0 +
∑

j∈N\I
cjT ≤ 0, ∀I ⊃ Ki,

follow from the inequality
c0 +

∑

j∈N\Ki

cjT ≤ 0,

becauseN\Ki ⊂ N\I, as was to be proved.

Theorem 5. Supposehi(t), i = 1, . . . , n, are the upper mean levels of component per-
formances. For computing the upper mean levels of system performanceh, the natural
extension can be used in the following form:

h = inf
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
, (11)

c0 +
∑

j∈Pi

cjT ≥ T, i = 1, . . . , p, c0 ≥ 0.
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Proof. DenoteI = {i : xi = T}. According to Theorems 1 and 3, the system of
constraints has the following form

c0 +
∑

j∈I

cjT ≥ S(TI) =
{

0
T

,

whereTI is a vector with non-zero componentsTj , j ∈ I. If I = ∅, thenc0 ≥ 0. Let
S(TI) = 0. Then inequalitiesc0 +

∑
j∈I cjT ≥ 0 ∀I 6= ∅ follow from the inequality

c0 ≥ 0. LetS(TI) = T . The system operates if all components belonging to a minimal
path operate. This implies thatI ⊃ Pi or I = Pi. Let I ⊃ Pi. Then inequalities

c0 +
∑

j∈I

cjT ≥ T, ∀I ⊃ Pi,

follow from the inequality
c0 +

∑

j∈Pi

cjT ≥ T.

This completes the proof.

Theorems 4 and 5 reveal the interesting underlying relationships among the sets
of constraints in the natural extension and minimal paths and cuts. Theorems allow
us to develop the formal rules for constructing the system of constraints for arbitrary
systems. Moreover, they reduce the number of constraints and essentially simplify the
linear optimization problems. Their usage will be illustrated below.

One of the conventional ways for simplifying the reliability analysis of systems is
the property of a decomposition. Let notation(A,χ) mean a coherent system with a
structure functionχ. HereA denotes a set of integers designating the components.

Definition 1. A modular decomposition of a coherent system(C, φ) is a set of disjoint
modules(A1, χ1),. . . ,(Am, χm) together with an organizing structureψ:

(a) C =
⋃m

i=1 Ai, Ai ∩Aj = ∅ for i 6= j,
(b) φ(Z) = ψ

(
χ1(ZA1), . . . , χm(ZAm)

)
,

whereZAi denotes the vector withmi elementszi ∈ {0, T}, i ∈ Ai.

Theorem 6. For a coherent systemφ, suppose(A1, χ1), . . . , (Am, χm) constitute one
of its modular decompositions with organizing structureψ, which hasp minimal paths
P1, . . . , Pp, k minimal cutsK1, . . . , Kk, and the upper and lower mean levels of sub-
system performanceV = (v1, . . . , vm)T, V = (v1, . . . , vm)T. Then the upper mean
levels of system performance is determined as the solution of the following optimization
problem:

h = inf
C≥0,c0

(
c0 + CV

)
, (12)

subject to

c0 + CX ≥ ψ(X) = max
1≤j≤p

min
i∈Pj

xi, X = (x1, . . . , xm)T.
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The lower mean levels of system performance is determined as the solution of the fol-
lowing optimization problem:

h = sup
C≥0,c0

(c0 + CV) , (13)

subject to

c0 + CX ≤ ψ(X) = max
1≤j≤p

min
i∈Pj

xi, X = (x1, . . . , xm)T. (14)

Proof. The vectorV can be obtained as the solution ofm optimization problems

vi = inf
Di≥0,di

(
di + Dih(YAi)

)
, di + DiYAi ≥ χ(YAi) = xi, i = 1, . . . , m, (15)

whereDi andYAi are vectors withmi components;h(YAi) is the vector of upper
previsions of gamblesYAi .

By substituting the vectorV into problem (12), we obtain

h = inf
C≥0,c0

(
c0 +

m∑

i=1

ci inf
Di≥0,di

(
di + Dih(YAi)

)
)

.

Sincec0 ≥ 0, C ≥ 0, Di ≥ 0, di ≥ 0, i = 1, . . . , m, andAi ∩ Aj = ∅ for i 6= j, then
there holds

h = inf
C≥0,c0

inf
Di≥0,di,i=1,...,m

(
c0 +

m∑

i=1

cidi +
m∑

i=1

ciDih(YAi)

)
.

Note that the set of previsionsh(YAi), i = 1, . . . , m, is the set of upper previsions for
all the components of the system with the structure functionφ.

Now consider constraints. Note thatxi = χi(YAi). By substituting constraints (15)
into (14), we obtain

c0 +
m∑

i=1

ci

(
di + DiYAi

)
= c0 +

m∑

i=1

cidi +
m∑

i=1

ciDiYAi

≥ ψ(χ1(YA1), . . . , χm(YAm)) = φ
(
YA1 , . . . ,YAm

)
.

This completes the proof.
The case of the lower prevision can be proved in a similar way.

The possibility of the modular decomposition of a coherent system is the very im-
portant and useful property of reliability assessments because many complex systems
can be constructed with typical systems such as series and parallel systems.
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5.2 Series Systems

Definition 2. A series structure is such that

S(X) = min(x1, x2, . . . , xn).

Theorem 7. Let hi and hi, i = 1, . . . , n, be the lower and upper mean levels of
componenti performance for a series system with the structure functionS(X) =
min(x1, . . . , xn), xi ∈ L. Then the lower and upper mean levels of system performance
are defined as follows:

h = max

(
0,

n∑

i=1

hi − (n− 1)T

)
, (16)

h = min
i=1,...,n

hi. (17)

Proof. From Theorem 4, we obtain the optimization problem for computing the lower
prevision

h = sup
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
,

c0 +
n∑

j=1,j 6=i

ciT ≤ 0, i = 1, . . . , n, c0 +
n∑

i=1

ciT ≤ T, c0 ≤ 0.

From constraints we can write0 ≤ ci ≤ 1, i = 1, . . . , n. This implies thatc0 ≤
−T (n− 1) if ci = 1 andc0 ≤ 0 if ci = 0, i = 1, . . . , n. Then

h = max

(
−T (n− 1) +

n∑

i=1

hi, 0

)
.

This completes the proof of (16).
From Theorem 5, we obtain the optimization problem for computing the upper pre-

vision

h = inf
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
,

c0 +
n∑

i=1

ciT ≥ T, c0 ≥ 0.

We will find solutions to the problem at corner points of the feasible region. There are
two sets of such the points: (1)c0 = 0, ck = 1, ci = 0, i 6= k; (2) c0 = T , ci = 0,
i = 1, . . . , n. If we consider the first solution, thenh = mini=1,...,n hi. If we consider
the second solution, thenh = T . Note thathi ≤ T . With this inequality we arrive at
(17).
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5.3 Parallel Systems

Definition 3. A parallel structure is such that

S(X) = max(x1, x2, . . . , xn).

Theorem 8. Let hi and hi, i = 1, . . . , n, be the lower and upper mean levels of
componenti performance for a parallel system with the structure functionS(X) =
max(x1, . . . , xn), xi ∈ L. Then the lower and upper mean levels of system perfor-
mance are defined as follows:

h = max
i=1,...,n

hi, (18)

h = min

(
n∑

i=1

hi, T

)
. (19)

Proof. From Theorem 4, we obtain the optimization problem for computing the lower
prevision

h = sup
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
,

c0 +
n∑

i=1

ciT ≤ T, c0 ≤ 0.

We will find solutions to the problem at corner points of the feasible region. There are
two sets of such the points: (1)c0 = 0, ck = 1, ci = 0, i 6= k; (2) c0 = 0, ci = 0,
i = 1, ..., n. If we consider the first solution, thenh = maxi=1,...,n hi. If we consider
the second solution, thenh = 0. Note thathi ≥ 0. With this inequality we arrive at
(18).

From Theorem 5, we obtain the optimization problem for computing the upper pre-
vision

h = inf
C≥0,c0

(
c0 +

n∑

i=1

cihi

)
,

c0 + ciT ≥ T, i = 1, . . . , n, c0 ≥ 0.

It follows from the above inequalities thatci ≥ max (0, 1− c0/T ). Therefore, we can
write the following optimization problem:

h = c0 +
n∑

i=1

hi max
(
0, 1− c0

T

)
→ min

c0≥0
.

If 0 ≤ c0 ≤ T , then

h = c0 +
n∑

i=1

hi

(
1− c0

T

)
=

n∑

i=1

hi + c0

(
1−

n∑

i=1

hi

T

)
.
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Minimum of h is achieved byc0 = 0 or c0 = T. In the first case, there holdsh =∑n
i=1 hi, in the second case, we haveh = T . If T ≤ c0, thenh = c0 = T . In sum, we

obtain

h = min

(
n∑

i=1

hi, T

)
.

This completes the proof of (19).

1 2

3 4

5

Fig. 1. A series-parallel system with two states

Example 3.Let us consider a system given in Fig. 1 whose components may be in
two states: perfect functioning (A) and complete failure (B). To express the uncertainty
about the reliability of components, experts make the judgements:

– failures of components 1 and 3 are very unlikely.
– failure of component 2 has very low probability.
– functioning of component 4 is extremely unlikely.
– functioning of component 5 is probable.

Let us translate the judgements in natural language into lower and upper probabili-
ties by using Walley’s paper [7].

– Components 1 and 3:P (B1) = P (B3) ≤ 0.25.
– Component 2:P (B2) ≤ 0.1.
– Component 4:P (A4) ≤ 0.02.
– Component 5:P (A5) ≥ 0.5.

HereP (Ai), P (Bi) andP (Ai), P (Bi) denote lower and upper probabilities that
theith component functions or fails, respectively. From the above assessments, we can
write the vacuous probabilities:P (B1) = P (B3) ≥ 0, P (A4) = 0, P (B2) ≥ 0,
P (A5) ≤ 1. By using equalitiesP (Ai) = 1−P (Bi) andP (Ai) = 1−P (Bi), we can
compute the following probabilities:

– Components 1 and 3:P (A1) ≤ 1, P (A1) ≥ 0.75, P (A3) ≤ 1, P (A3) ≥ 0.75.
– Component 2:P (A2) ≤ 1, P (A2) ≥ 0.9.
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– Component 4:P (B4) ≥ 0.98, P (B4) ≤ 1.
– Component 5:P (B5) ≥ 0, P (B5) ≤ 0.5.

By using the expressions for upper and lower previsions of series and parallel sys-
tems, we can obtain lower and upper probabilities that the system is functioning:

h = max (0, h1 + h2 + h5 − 2, h3 + h4 + h5 − 2)

= max (0, 0.75 + 0.9 + 0, 5− 2, 0.75 + 0 + 0.5− 2) = 0.15

h = min
(
h5, min(h1, h2) + min(h3, h4)

)

= min (1, min(1, 1) + min(1, 0.02)) = 1.

Herehi = P (Ai) andhi = P (Ai).

Example 4.Consider the performance level of a tube which is defined by sizes of cracks
on the bore and surface of it. Examination of the bore of the tube by experts revealed
a crack with the mean size 3–4 mm. Examination of the surface of the tube revealed a
crack with the mean size 2–2.5 mm. It is supposed that the maximal size of cracks is
equal to8 mm and the tube is destructed if both cracks have the size8 mm. The tube can
be regarded as a continuum system with the structure functionS(x1, x2) ∈ L = [0, 8]
andx1, x2 ∈ L = [0, 8]. Moreover, it follows from the description of the tube that
S(x1, x2) = max(x1, x2). Hereh1 = 3, h1 = 4, h2 = 2, h2 = 2.5. Now we can
obtain the performance levels of the tube as follows:

h = max (h1, h2) = 3,

h = min
(
h1 + h2, T

)
= 6.5.

In spite of simplicity of linear optimization problems (10), (11), the reliability anal-
ysis of systems with a large number of components is the difficult computational prob-
lem. Therefore, the explicit expressions for lower and upper mean levels of system
performance are desirable.

Theorem 9. Suppose that a coherent structureS of a binary system hasp minimal
pathsP1, . . . , Pp containingm1, . . . , mp components, respectively. Lethi, i = 1, . . . , n,
be the lower mean level of componenti performance. Then the lower mean level of sys-
tem performance is determined as

h = max
1≤j≤p

max


0,

∑

i∈Pj

hi − (mj − 1)T


 .

Proof. First we have to prove that the assumption of independence for components of a
parallel system is not required when we compute the lower mean level of parallel system
performance. Suppose thatlth andmth components of a parallel system consisting of
n components are dependent, i.e. there holdsxl = xm. Write the system of constraints
to the optimization problem corresponding to the lower prevision

c0 +
∑

i 6=l,i6=m

cixi + cl · 0 + cm · 0 ≤ max
i6=l,i 6=m

xi,
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c0 +
∑

i 6=l,i6=m

cixi + cl · T + cm · T ≤ T.

If xi = 0 ∀i 6= l, i 6= m, then it follows from the first inequality thatc0 ≤ 0. If
∃i 6= l, i 6= m xi = T , then the obtained inequality follows from the inequalityc0 +∑n

i=1 ciT ≤ T . In sum, we obtain constraints which coincide with constraints for the
parallel systems with independent components (see proof for Theorem 8).

Now we can represent the system as a parallel connection of independent minimal
paths, where each minimal path is a series system.

Theorem 10. Suppose that a coherent structureS of a binary system hask minimal
cut setsK1, . . . , Kk. Let hi, i = 1, . . . , n, be the upper mean level of componenti
performance. Then the upper mean level of system performance is determined as

h = min
1≤j≤k

min


 ∑

i∈Kj

hi, T


 .

Proof. Similar to the proof for Theorem 9.

Example 5.Consider a system withn = 5 component, whose graphical representation
is depicted in Fig. 2. For this system, we havep = 4 minimal pathsP1 = {1, 4},
P2 = {2, 5}, P3 = {1, 3, 5}, P4 = {2, 3, 4} andk = 4 minimal cutsK1 = {1, 2},
K2 = {4, 5}, K3 = {1, 3, 5}, K4 = {2, 3, 4}. Let hi andhi, i = 1, . . . , 5, be the lower
and upper mean levels of componenti performance. By using Theorems 9 and 10, we
obtain the lower and upper mean levels of system performance as follows:

h = max (0, h1 + h4 − T, h2 + h5 − T, h1 + h3 + h5 − 2T, h2 + h3 + h4 − 2T ) ,

h = min (T, h1 + h2, h4 + h5, h1 + h3 + h5, h2 + h3 + h4) .

6 Conclusion

In this paper we have shown that the reliability of systems with the imprecise structure
functions can be analyzed by means of the theory of imprecise probabilities. We have
illustrated that the reliability assessments can be obtained even by extremely restricted
information. With the mean levels of component performance as information on the
functioning of components, the following conclusions have been made:

– The multistate and continuum systems can be regarded as two-state systems. In
other words, we take into account the bounds of states.

– There is the underlying relationships among the natural extension and minimal
paths and cuts.

– The property of the modular decomposition of coherent systems is valid.
– For the series-parallel systems, bounds of mean levels of system performance can

be obtained in the explicit form.
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Fig. 2. A system with two states

– For arbitrary systems with known minimal paths and cuts, bounds of mean levels
of system performance can be obtained in the explicit form.

It should be noted that obtained results have to be considered as an attempt to de-
velop the general reliability theory. At the same time, results of the paper have the
strong mathematical sense and can be used in practice. We can expect that the general
reliability theory will become a powerful tool for reliability analyzing and will play a
dominant role in developing new reliability models.
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